Metamath Proof Explorer


Theorem mnuprd

Description: Minimal universes are closed under pairing. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnuprd.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
mnuprd.2 φ U M
mnuprd.3 φ A U
mnuprd.4 φ B U
Assertion mnuprd φ A B U

Proof

Step Hyp Ref Expression
1 mnuprd.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
2 mnuprd.2 φ U M
3 mnuprd.3 φ A U
4 mnuprd.4 φ B U
5 2 adantr φ A = U M
6 4 adantr φ A = B U
7 simpr φ A = A =
8 0ss B
9 7 8 eqsstrdi φ A = A B
10 ssidd φ A = B B
11 1 5 6 9 10 mnuprssd φ A = A B U
12 eqid A B = A B
13 2 adantr φ ¬ A = U M
14 3 adantr φ ¬ A = A U
15 4 adantr φ ¬ A = B U
16 simpr φ ¬ A = ¬ A =
17 1 12 13 14 15 16 mnuprdlem4 φ ¬ A = A B U
18 11 17 pm2.61dan φ A B U