Metamath Proof Explorer


Theorem mnuprd

Description: Minimal universes are closed under pairing. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnuprd.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
mnuprd.2 φUM
mnuprd.3 φAU
mnuprd.4 φBU
Assertion mnuprd φABU

Proof

Step Hyp Ref Expression
1 mnuprd.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
2 mnuprd.2 φUM
3 mnuprd.3 φAU
4 mnuprd.4 φBU
5 2 adantr φA=UM
6 4 adantr φA=BU
7 simpr φA=A=
8 0ss B
9 7 8 eqsstrdi φA=AB
10 ssidd φA=BB
11 1 5 6 9 10 mnuprssd φA=ABU
12 eqid AB=AB
13 2 adantr φ¬A=UM
14 3 adantr φ¬A=AU
15 4 adantr φ¬A=BU
16 simpr φ¬A=¬A=
17 1 12 13 14 15 16 mnuprdlem4 φ¬A=ABU
18 11 17 pm2.61dan φABU