| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mnuprd.1 |
|- M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) } |
| 2 |
|
mnuprd.2 |
|- ( ph -> U e. M ) |
| 3 |
|
mnuprd.3 |
|- ( ph -> A e. U ) |
| 4 |
|
mnuprd.4 |
|- ( ph -> B e. U ) |
| 5 |
2
|
adantr |
|- ( ( ph /\ A = (/) ) -> U e. M ) |
| 6 |
4
|
adantr |
|- ( ( ph /\ A = (/) ) -> B e. U ) |
| 7 |
|
simpr |
|- ( ( ph /\ A = (/) ) -> A = (/) ) |
| 8 |
|
0ss |
|- (/) C_ B |
| 9 |
7 8
|
eqsstrdi |
|- ( ( ph /\ A = (/) ) -> A C_ B ) |
| 10 |
|
ssidd |
|- ( ( ph /\ A = (/) ) -> B C_ B ) |
| 11 |
1 5 6 9 10
|
mnuprssd |
|- ( ( ph /\ A = (/) ) -> { A , B } e. U ) |
| 12 |
|
eqid |
|- { { (/) , { A } } , { { (/) } , { B } } } = { { (/) , { A } } , { { (/) } , { B } } } |
| 13 |
2
|
adantr |
|- ( ( ph /\ -. A = (/) ) -> U e. M ) |
| 14 |
3
|
adantr |
|- ( ( ph /\ -. A = (/) ) -> A e. U ) |
| 15 |
4
|
adantr |
|- ( ( ph /\ -. A = (/) ) -> B e. U ) |
| 16 |
|
simpr |
|- ( ( ph /\ -. A = (/) ) -> -. A = (/) ) |
| 17 |
1 12 13 14 15 16
|
mnuprdlem4 |
|- ( ( ph /\ -. A = (/) ) -> { A , B } e. U ) |
| 18 |
11 17
|
pm2.61dan |
|- ( ph -> { A , B } e. U ) |