Step |
Hyp |
Ref |
Expression |
1 |
|
mnuprd.1 |
|- M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) } |
2 |
|
mnuprd.2 |
|- ( ph -> U e. M ) |
3 |
|
mnuprd.3 |
|- ( ph -> A e. U ) |
4 |
|
mnuprd.4 |
|- ( ph -> B e. U ) |
5 |
2
|
adantr |
|- ( ( ph /\ A = (/) ) -> U e. M ) |
6 |
4
|
adantr |
|- ( ( ph /\ A = (/) ) -> B e. U ) |
7 |
|
simpr |
|- ( ( ph /\ A = (/) ) -> A = (/) ) |
8 |
|
0ss |
|- (/) C_ B |
9 |
7 8
|
eqsstrdi |
|- ( ( ph /\ A = (/) ) -> A C_ B ) |
10 |
|
ssidd |
|- ( ( ph /\ A = (/) ) -> B C_ B ) |
11 |
1 5 6 9 10
|
mnuprssd |
|- ( ( ph /\ A = (/) ) -> { A , B } e. U ) |
12 |
|
eqid |
|- { { (/) , { A } } , { { (/) } , { B } } } = { { (/) , { A } } , { { (/) } , { B } } } |
13 |
2
|
adantr |
|- ( ( ph /\ -. A = (/) ) -> U e. M ) |
14 |
3
|
adantr |
|- ( ( ph /\ -. A = (/) ) -> A e. U ) |
15 |
4
|
adantr |
|- ( ( ph /\ -. A = (/) ) -> B e. U ) |
16 |
|
simpr |
|- ( ( ph /\ -. A = (/) ) -> -. A = (/) ) |
17 |
1 12 13 14 15 16
|
mnuprdlem4 |
|- ( ( ph /\ -. A = (/) ) -> { A , B } e. U ) |
18 |
11 17
|
pm2.61dan |
|- ( ph -> { A , B } e. U ) |