Metamath Proof Explorer


Theorem mnuprd

Description: Minimal universes are closed under pairing. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnuprd.1
|- M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) }
mnuprd.2
|- ( ph -> U e. M )
mnuprd.3
|- ( ph -> A e. U )
mnuprd.4
|- ( ph -> B e. U )
Assertion mnuprd
|- ( ph -> { A , B } e. U )

Proof

Step Hyp Ref Expression
1 mnuprd.1
 |-  M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) }
2 mnuprd.2
 |-  ( ph -> U e. M )
3 mnuprd.3
 |-  ( ph -> A e. U )
4 mnuprd.4
 |-  ( ph -> B e. U )
5 2 adantr
 |-  ( ( ph /\ A = (/) ) -> U e. M )
6 4 adantr
 |-  ( ( ph /\ A = (/) ) -> B e. U )
7 simpr
 |-  ( ( ph /\ A = (/) ) -> A = (/) )
8 0ss
 |-  (/) C_ B
9 7 8 eqsstrdi
 |-  ( ( ph /\ A = (/) ) -> A C_ B )
10 ssidd
 |-  ( ( ph /\ A = (/) ) -> B C_ B )
11 1 5 6 9 10 mnuprssd
 |-  ( ( ph /\ A = (/) ) -> { A , B } e. U )
12 eqid
 |-  { { (/) , { A } } , { { (/) } , { B } } } = { { (/) , { A } } , { { (/) } , { B } } }
13 2 adantr
 |-  ( ( ph /\ -. A = (/) ) -> U e. M )
14 3 adantr
 |-  ( ( ph /\ -. A = (/) ) -> A e. U )
15 4 adantr
 |-  ( ( ph /\ -. A = (/) ) -> B e. U )
16 simpr
 |-  ( ( ph /\ -. A = (/) ) -> -. A = (/) )
17 1 12 13 14 15 16 mnuprdlem4
 |-  ( ( ph /\ -. A = (/) ) -> { A , B } e. U )
18 11 17 pm2.61dan
 |-  ( ph -> { A , B } e. U )