Description: A minimal universe contains pairs of subsets of an element of the universe. (Contributed by Rohan Ridenour, 13-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mnuprssd.1 | |- M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) } |
|
| mnuprssd.2 | |- ( ph -> U e. M ) |
||
| mnuprssd.3 | |- ( ph -> C e. U ) |
||
| mnuprssd.4 | |- ( ph -> A C_ C ) |
||
| mnuprssd.5 | |- ( ph -> B C_ C ) |
||
| Assertion | mnuprssd | |- ( ph -> { A , B } e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnuprssd.1 | |- M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) } |
|
| 2 | mnuprssd.2 | |- ( ph -> U e. M ) |
|
| 3 | mnuprssd.3 | |- ( ph -> C e. U ) |
|
| 4 | mnuprssd.4 | |- ( ph -> A C_ C ) |
|
| 5 | mnuprssd.5 | |- ( ph -> B C_ C ) |
|
| 6 | 1 2 3 | mnupwd | |- ( ph -> ~P C e. U ) |
| 7 | 3 4 | sselpwd | |- ( ph -> A e. ~P C ) |
| 8 | 3 5 | sselpwd | |- ( ph -> B e. ~P C ) |
| 9 | 7 8 | prssd | |- ( ph -> { A , B } C_ ~P C ) |
| 10 | 1 2 6 9 | mnussd | |- ( ph -> { A , B } e. U ) |