Metamath Proof Explorer


Theorem mnuprssd

Description: A minimal universe contains pairs of subsets of an element of the universe. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnuprssd.1
|- M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) }
mnuprssd.2
|- ( ph -> U e. M )
mnuprssd.3
|- ( ph -> C e. U )
mnuprssd.4
|- ( ph -> A C_ C )
mnuprssd.5
|- ( ph -> B C_ C )
Assertion mnuprssd
|- ( ph -> { A , B } e. U )

Proof

Step Hyp Ref Expression
1 mnuprssd.1
 |-  M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) }
2 mnuprssd.2
 |-  ( ph -> U e. M )
3 mnuprssd.3
 |-  ( ph -> C e. U )
4 mnuprssd.4
 |-  ( ph -> A C_ C )
5 mnuprssd.5
 |-  ( ph -> B C_ C )
6 1 2 3 mnupwd
 |-  ( ph -> ~P C e. U )
7 3 4 sselpwd
 |-  ( ph -> A e. ~P C )
8 3 5 sselpwd
 |-  ( ph -> B e. ~P C )
9 7 8 prssd
 |-  ( ph -> { A , B } C_ ~P C )
10 1 2 6 9 mnussd
 |-  ( ph -> { A , B } e. U )