Description: Special case of mnuprssd . (Contributed by Rohan Ridenour, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mnuprss2d.1 | |- M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) } |
|
mnuprss2d.2 | |- ( ph -> U e. M ) |
||
mnuprss2d.3 | |- ( ph -> C e. U ) |
||
mnuprss2d.4 | |- A C_ C |
||
mnuprss2d.5 | |- B C_ C |
||
Assertion | mnuprss2d | |- ( ph -> { A , B } e. U ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnuprss2d.1 | |- M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) } |
|
2 | mnuprss2d.2 | |- ( ph -> U e. M ) |
|
3 | mnuprss2d.3 | |- ( ph -> C e. U ) |
|
4 | mnuprss2d.4 | |- A C_ C |
|
5 | mnuprss2d.5 | |- B C_ C |
|
6 | 4 | a1i | |- ( ph -> A C_ C ) |
7 | 5 | a1i | |- ( ph -> B C_ C ) |
8 | 1 2 3 6 7 | mnuprssd | |- ( ph -> { A , B } e. U ) |