Metamath Proof Explorer


Theorem mnuprss2d

Description: Special case of mnuprssd . (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnuprss2d.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
mnuprss2d.2 ( 𝜑𝑈𝑀 )
mnuprss2d.3 ( 𝜑𝐶𝑈 )
mnuprss2d.4 𝐴𝐶
mnuprss2d.5 𝐵𝐶
Assertion mnuprss2d ( 𝜑 → { 𝐴 , 𝐵 } ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 mnuprss2d.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
2 mnuprss2d.2 ( 𝜑𝑈𝑀 )
3 mnuprss2d.3 ( 𝜑𝐶𝑈 )
4 mnuprss2d.4 𝐴𝐶
5 mnuprss2d.5 𝐵𝐶
6 4 a1i ( 𝜑𝐴𝐶 )
7 5 a1i ( 𝜑𝐵𝐶 )
8 1 2 3 6 7 mnuprssd ( 𝜑 → { 𝐴 , 𝐵 } ∈ 𝑈 )