Description: Special case of mnuprssd . (Contributed by Rohan Ridenour, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mnuprss2d.1 | ⊢ 𝑀 = { 𝑘 ∣ ∀ 𝑙 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑘 ∧ ∀ 𝑚 ∃ 𝑛 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑛 ∧ ∀ 𝑝 ∈ 𝑙 ( ∃ 𝑞 ∈ 𝑘 ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚 ) → ∃ 𝑟 ∈ 𝑚 ( 𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛 ) ) ) ) } | |
mnuprss2d.2 | ⊢ ( 𝜑 → 𝑈 ∈ 𝑀 ) | ||
mnuprss2d.3 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) | ||
mnuprss2d.4 | ⊢ 𝐴 ⊆ 𝐶 | ||
mnuprss2d.5 | ⊢ 𝐵 ⊆ 𝐶 | ||
Assertion | mnuprss2d | ⊢ ( 𝜑 → { 𝐴 , 𝐵 } ∈ 𝑈 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnuprss2d.1 | ⊢ 𝑀 = { 𝑘 ∣ ∀ 𝑙 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑘 ∧ ∀ 𝑚 ∃ 𝑛 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑛 ∧ ∀ 𝑝 ∈ 𝑙 ( ∃ 𝑞 ∈ 𝑘 ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚 ) → ∃ 𝑟 ∈ 𝑚 ( 𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛 ) ) ) ) } | |
2 | mnuprss2d.2 | ⊢ ( 𝜑 → 𝑈 ∈ 𝑀 ) | |
3 | mnuprss2d.3 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) | |
4 | mnuprss2d.4 | ⊢ 𝐴 ⊆ 𝐶 | |
5 | mnuprss2d.5 | ⊢ 𝐵 ⊆ 𝐶 | |
6 | 4 | a1i | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
7 | 5 | a1i | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) |
8 | 1 2 3 6 7 | mnuprssd | ⊢ ( 𝜑 → { 𝐴 , 𝐵 } ∈ 𝑈 ) |