Metamath Proof Explorer


Theorem sselpwd

Description: Elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020)

Ref Expression
Hypotheses sselpwd.1
|- ( ph -> B e. V )
sselpwd.2
|- ( ph -> A C_ B )
Assertion sselpwd
|- ( ph -> A e. ~P B )

Proof

Step Hyp Ref Expression
1 sselpwd.1
 |-  ( ph -> B e. V )
2 sselpwd.2
 |-  ( ph -> A C_ B )
3 1 2 ssexd
 |-  ( ph -> A e. _V )
4 3 2 elpwd
 |-  ( ph -> A e. ~P B )