Metamath Proof Explorer
Description: Elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020)
|
|
Ref |
Expression |
|
Hypotheses |
sselpwd.1 |
|- ( ph -> B e. V ) |
|
|
sselpwd.2 |
|- ( ph -> A C_ B ) |
|
Assertion |
sselpwd |
|- ( ph -> A e. ~P B ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sselpwd.1 |
|- ( ph -> B e. V ) |
2 |
|
sselpwd.2 |
|- ( ph -> A C_ B ) |
3 |
1 2
|
ssexd |
|- ( ph -> A e. _V ) |
4 |
3 2
|
elpwd |
|- ( ph -> A e. ~P B ) |