Metamath Proof Explorer
Description: A minimal universe contains pairs of subsets of an element of the
universe. (Contributed by Rohan Ridenour, 13-Aug-2023)
|
|
Ref |
Expression |
|
Hypotheses |
mnuprssd.1 |
|
|
|
mnuprssd.2 |
|
|
|
mnuprssd.3 |
|
|
|
mnuprssd.4 |
|
|
|
mnuprssd.5 |
|
|
Assertion |
mnuprssd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mnuprssd.1 |
|
2 |
|
mnuprssd.2 |
|
3 |
|
mnuprssd.3 |
|
4 |
|
mnuprssd.4 |
|
5 |
|
mnuprssd.5 |
|
6 |
1 2 3
|
mnupwd |
|
7 |
3 4
|
sselpwd |
|
8 |
3 5
|
sselpwd |
|
9 |
7 8
|
prssd |
|
10 |
1 2 6 9
|
mnussd |
|