Metamath Proof Explorer


Theorem mnuprssd

Description: A minimal universe contains pairs of subsets of an element of the universe. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnuprssd.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
mnuprssd.2 φUM
mnuprssd.3 φCU
mnuprssd.4 φAC
mnuprssd.5 φBC
Assertion mnuprssd φABU

Proof

Step Hyp Ref Expression
1 mnuprssd.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
2 mnuprssd.2 φUM
3 mnuprssd.3 φCU
4 mnuprssd.4 φAC
5 mnuprssd.5 φBC
6 1 2 3 mnupwd φ𝒫CU
7 3 4 sselpwd φA𝒫C
8 3 5 sselpwd φB𝒫C
9 7 8 prssd φAB𝒫C
10 1 2 6 9 mnussd φABU