Step |
Hyp |
Ref |
Expression |
1 |
|
mnuprd.1 |
⊢ 𝑀 = { 𝑘 ∣ ∀ 𝑙 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑘 ∧ ∀ 𝑚 ∃ 𝑛 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑛 ∧ ∀ 𝑝 ∈ 𝑙 ( ∃ 𝑞 ∈ 𝑘 ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚 ) → ∃ 𝑟 ∈ 𝑚 ( 𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛 ) ) ) ) } |
2 |
|
mnuprd.2 |
⊢ ( 𝜑 → 𝑈 ∈ 𝑀 ) |
3 |
|
mnuprd.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
4 |
|
mnuprd.4 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) |
5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → 𝑈 ∈ 𝑀 ) |
6 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → 𝐵 ∈ 𝑈 ) |
7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → 𝐴 = ∅ ) |
8 |
|
0ss |
⊢ ∅ ⊆ 𝐵 |
9 |
7 8
|
eqsstrdi |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → 𝐴 ⊆ 𝐵 ) |
10 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → 𝐵 ⊆ 𝐵 ) |
11 |
1 5 6 9 10
|
mnuprssd |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → { 𝐴 , 𝐵 } ∈ 𝑈 ) |
12 |
|
eqid |
⊢ { { ∅ , { 𝐴 } } , { { ∅ } , { 𝐵 } } } = { { ∅ , { 𝐴 } } , { { ∅ } , { 𝐵 } } } |
13 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → 𝑈 ∈ 𝑀 ) |
14 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → 𝐴 ∈ 𝑈 ) |
15 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → 𝐵 ∈ 𝑈 ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ¬ 𝐴 = ∅ ) |
17 |
1 12 13 14 15 16
|
mnuprdlem4 |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → { 𝐴 , 𝐵 } ∈ 𝑈 ) |
18 |
11 17
|
pm2.61dan |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ∈ 𝑈 ) |