Metamath Proof Explorer


Theorem mnuprd

Description: Minimal universes are closed under pairing. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnuprd.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
mnuprd.2 ( 𝜑𝑈𝑀 )
mnuprd.3 ( 𝜑𝐴𝑈 )
mnuprd.4 ( 𝜑𝐵𝑈 )
Assertion mnuprd ( 𝜑 → { 𝐴 , 𝐵 } ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 mnuprd.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
2 mnuprd.2 ( 𝜑𝑈𝑀 )
3 mnuprd.3 ( 𝜑𝐴𝑈 )
4 mnuprd.4 ( 𝜑𝐵𝑈 )
5 2 adantr ( ( 𝜑𝐴 = ∅ ) → 𝑈𝑀 )
6 4 adantr ( ( 𝜑𝐴 = ∅ ) → 𝐵𝑈 )
7 simpr ( ( 𝜑𝐴 = ∅ ) → 𝐴 = ∅ )
8 0ss ∅ ⊆ 𝐵
9 7 8 eqsstrdi ( ( 𝜑𝐴 = ∅ ) → 𝐴𝐵 )
10 ssidd ( ( 𝜑𝐴 = ∅ ) → 𝐵𝐵 )
11 1 5 6 9 10 mnuprssd ( ( 𝜑𝐴 = ∅ ) → { 𝐴 , 𝐵 } ∈ 𝑈 )
12 eqid { { ∅ , { 𝐴 } } , { { ∅ } , { 𝐵 } } } = { { ∅ , { 𝐴 } } , { { ∅ } , { 𝐵 } } }
13 2 adantr ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → 𝑈𝑀 )
14 3 adantr ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → 𝐴𝑈 )
15 4 adantr ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → 𝐵𝑈 )
16 simpr ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ¬ 𝐴 = ∅ )
17 1 12 13 14 15 16 mnuprdlem4 ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → { 𝐴 , 𝐵 } ∈ 𝑈 )
18 11 17 pm2.61dan ( 𝜑 → { 𝐴 , 𝐵 } ∈ 𝑈 )