Metamath Proof Explorer


Theorem cbvraldva2

Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses cbvraldva2.1 φx=yψχ
cbvraldva2.2 φx=yA=B
Assertion cbvraldva2 φxAψyBχ

Proof

Step Hyp Ref Expression
1 cbvraldva2.1 φx=yψχ
2 cbvraldva2.2 φx=yA=B
3 simpr φx=yx=y
4 3 2 eleq12d φx=yxAyB
5 4 1 imbi12d φx=yxAψyBχ
6 5 expcom x=yφxAψyBχ
7 6 pm5.74d x=yφxAψφyBχ
8 7 cbvalvw xφxAψyφyBχ
9 19.21v xφxAψφxxAψ
10 19.21v yφyBχφyyBχ
11 8 9 10 3bitr3i φxxAψφyyBχ
12 11 pm5.74ri φxxAψyyBχ
13 df-ral xAψxxAψ
14 df-ral yBχyyBχ
15 12 13 14 3bitr4g φxAψyBχ