| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cbvraldva2.1 | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝑦 )  →  ( 𝜓  ↔  𝜒 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							cbvraldva2.2 | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝑦 )  →  𝐴  =  𝐵 )  | 
						
						
							| 3 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝑦 )  →  𝑥  =  𝑦 )  | 
						
						
							| 4 | 
							
								3 2
							 | 
							eleq12d | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝑦 )  →  ( 𝑥  ∈  𝐴  ↔  𝑦  ∈  𝐵 ) )  | 
						
						
							| 5 | 
							
								4 1
							 | 
							imbi12d | 
							⊢ ( ( 𝜑  ∧  𝑥  =  𝑦 )  →  ( ( 𝑥  ∈  𝐴  →  𝜓 )  ↔  ( 𝑦  ∈  𝐵  →  𝜒 ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							expcom | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝜑  →  ( ( 𝑥  ∈  𝐴  →  𝜓 )  ↔  ( 𝑦  ∈  𝐵  →  𝜒 ) ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							pm5.74d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  →  ( 𝑥  ∈  𝐴  →  𝜓 ) )  ↔  ( 𝜑  →  ( 𝑦  ∈  𝐵  →  𝜒 ) ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							cbvalvw | 
							⊢ ( ∀ 𝑥 ( 𝜑  →  ( 𝑥  ∈  𝐴  →  𝜓 ) )  ↔  ∀ 𝑦 ( 𝜑  →  ( 𝑦  ∈  𝐵  →  𝜒 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							19.21v | 
							⊢ ( ∀ 𝑥 ( 𝜑  →  ( 𝑥  ∈  𝐴  →  𝜓 ) )  ↔  ( 𝜑  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜓 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							19.21v | 
							⊢ ( ∀ 𝑦 ( 𝜑  →  ( 𝑦  ∈  𝐵  →  𝜒 ) )  ↔  ( 𝜑  →  ∀ 𝑦 ( 𝑦  ∈  𝐵  →  𝜒 ) ) )  | 
						
						
							| 11 | 
							
								8 9 10
							 | 
							3bitr3i | 
							⊢ ( ( 𝜑  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜓 ) )  ↔  ( 𝜑  →  ∀ 𝑦 ( 𝑦  ∈  𝐵  →  𝜒 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							pm5.74ri | 
							⊢ ( 𝜑  →  ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜓 )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐵  →  𝜒 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							df-ral | 
							⊢ ( ∀ 𝑥  ∈  𝐴 𝜓  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜓 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							df-ral | 
							⊢ ( ∀ 𝑦  ∈  𝐵 𝜒  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐵  →  𝜒 ) )  | 
						
						
							| 15 | 
							
								12 13 14
							 | 
							3bitr4g | 
							⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐴 𝜓  ↔  ∀ 𝑦  ∈  𝐵 𝜒 ) )  |