Metamath Proof Explorer


Theorem cbvrexdva2

Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017) (Proof shortened by Wolf Lammen, 12-Aug-2023)

Ref Expression
Hypotheses cbvraldva2.1 ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
cbvraldva2.2 ( ( 𝜑𝑥 = 𝑦 ) → 𝐴 = 𝐵 )
Assertion cbvrexdva2 ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑦𝐵 𝜒 ) )

Proof

Step Hyp Ref Expression
1 cbvraldva2.1 ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
2 cbvraldva2.2 ( ( 𝜑𝑥 = 𝑦 ) → 𝐴 = 𝐵 )
3 simpr ( ( 𝜑𝑥 = 𝑦 ) → 𝑥 = 𝑦 )
4 3 2 eleq12d ( ( 𝜑𝑥 = 𝑦 ) → ( 𝑥𝐴𝑦𝐵 ) )
5 4 1 anbi12d ( ( 𝜑𝑥 = 𝑦 ) → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑦𝐵𝜒 ) ) )
6 5 ancoms ( ( 𝑥 = 𝑦𝜑 ) → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑦𝐵𝜒 ) ) )
7 6 pm5.32da ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ ( 𝑥𝐴𝜓 ) ) ↔ ( 𝜑 ∧ ( 𝑦𝐵𝜒 ) ) ) )
8 7 cbvexvw ( ∃ 𝑥 ( 𝜑 ∧ ( 𝑥𝐴𝜓 ) ) ↔ ∃ 𝑦 ( 𝜑 ∧ ( 𝑦𝐵𝜒 ) ) )
9 19.42v ( ∃ 𝑥 ( 𝜑 ∧ ( 𝑥𝐴𝜓 ) ) ↔ ( 𝜑 ∧ ∃ 𝑥 ( 𝑥𝐴𝜓 ) ) )
10 19.42v ( ∃ 𝑦 ( 𝜑 ∧ ( 𝑦𝐵𝜒 ) ) ↔ ( 𝜑 ∧ ∃ 𝑦 ( 𝑦𝐵𝜒 ) ) )
11 8 9 10 3bitr3i ( ( 𝜑 ∧ ∃ 𝑥 ( 𝑥𝐴𝜓 ) ) ↔ ( 𝜑 ∧ ∃ 𝑦 ( 𝑦𝐵𝜒 ) ) )
12 pm5.32 ( ( 𝜑 → ( ∃ 𝑥 ( 𝑥𝐴𝜓 ) ↔ ∃ 𝑦 ( 𝑦𝐵𝜒 ) ) ) ↔ ( ( 𝜑 ∧ ∃ 𝑥 ( 𝑥𝐴𝜓 ) ) ↔ ( 𝜑 ∧ ∃ 𝑦 ( 𝑦𝐵𝜒 ) ) ) )
13 11 12 mpbir ( 𝜑 → ( ∃ 𝑥 ( 𝑥𝐴𝜓 ) ↔ ∃ 𝑦 ( 𝑦𝐵𝜒 ) ) )
14 df-rex ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥 ( 𝑥𝐴𝜓 ) )
15 df-rex ( ∃ 𝑦𝐵 𝜒 ↔ ∃ 𝑦 ( 𝑦𝐵𝜒 ) )
16 13 14 15 3bitr4g ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑦𝐵 𝜒 ) )