Metamath Proof Explorer


Theorem mnuop123d

Description: Operations of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnuop123d.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
mnuop123d.2 ( 𝜑𝑈𝑀 )
mnuop123d.3 ( 𝜑𝐴𝑈 )
Assertion mnuop123d ( 𝜑 → ( 𝒫 𝐴𝑈 ∧ ∀ 𝑓𝑤𝑈 ( 𝒫 𝐴𝑤 ∧ ∀ 𝑖𝐴 ( ∃ 𝑣𝑈 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 mnuop123d.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
2 mnuop123d.2 ( 𝜑𝑈𝑀 )
3 mnuop123d.3 ( 𝜑𝐴𝑈 )
4 pweq ( 𝑧 = 𝐴 → 𝒫 𝑧 = 𝒫 𝐴 )
5 4 sseq1d ( 𝑧 = 𝐴 → ( 𝒫 𝑧𝑈 ↔ 𝒫 𝐴𝑈 ) )
6 4 sseq1d ( 𝑧 = 𝐴 → ( 𝒫 𝑧𝑤 ↔ 𝒫 𝐴𝑤 ) )
7 raleq ( 𝑧 = 𝐴 → ( ∀ 𝑖𝑧 ( ∃ 𝑣𝑈 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ↔ ∀ 𝑖𝐴 ( ∃ 𝑣𝑈 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) )
8 6 7 anbi12d ( 𝑧 = 𝐴 → ( ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝑈 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ↔ ( 𝒫 𝐴𝑤 ∧ ∀ 𝑖𝐴 ( ∃ 𝑣𝑈 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) )
9 8 rexbidv ( 𝑧 = 𝐴 → ( ∃ 𝑤𝑈 ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝑈 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ↔ ∃ 𝑤𝑈 ( 𝒫 𝐴𝑤 ∧ ∀ 𝑖𝐴 ( ∃ 𝑣𝑈 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) )
10 9 albidv ( 𝑧 = 𝐴 → ( ∀ 𝑓𝑤𝑈 ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝑈 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ↔ ∀ 𝑓𝑤𝑈 ( 𝒫 𝐴𝑤 ∧ ∀ 𝑖𝐴 ( ∃ 𝑣𝑈 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) )
11 5 10 anbi12d ( 𝑧 = 𝐴 → ( ( 𝒫 𝑧𝑈 ∧ ∀ 𝑓𝑤𝑈 ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝑈 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) ↔ ( 𝒫 𝐴𝑈 ∧ ∀ 𝑓𝑤𝑈 ( 𝒫 𝐴𝑤 ∧ ∀ 𝑖𝐴 ( ∃ 𝑣𝑈 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) ) )
12 1 ismnu ( 𝑈𝑀 → ( 𝑈𝑀 ↔ ∀ 𝑧𝑈 ( 𝒫 𝑧𝑈 ∧ ∀ 𝑓𝑤𝑈 ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝑈 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) ) )
13 12 ibi ( 𝑈𝑀 → ∀ 𝑧𝑈 ( 𝒫 𝑧𝑈 ∧ ∀ 𝑓𝑤𝑈 ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝑈 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) )
14 2 13 syl ( 𝜑 → ∀ 𝑧𝑈 ( 𝒫 𝑧𝑈 ∧ ∀ 𝑓𝑤𝑈 ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝑈 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) )
15 11 14 3 rspcdva ( 𝜑 → ( 𝒫 𝐴𝑈 ∧ ∀ 𝑓𝑤𝑈 ( 𝒫 𝐴𝑤 ∧ ∀ 𝑖𝐴 ( ∃ 𝑣𝑈 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) )