Step |
Hyp |
Ref |
Expression |
1 |
|
mnuop123d.1 |
⊢ 𝑀 = { 𝑘 ∣ ∀ 𝑙 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑘 ∧ ∀ 𝑚 ∃ 𝑛 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑛 ∧ ∀ 𝑝 ∈ 𝑙 ( ∃ 𝑞 ∈ 𝑘 ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚 ) → ∃ 𝑟 ∈ 𝑚 ( 𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛 ) ) ) ) } |
2 |
|
mnuop123d.2 |
⊢ ( 𝜑 → 𝑈 ∈ 𝑀 ) |
3 |
|
mnuop123d.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
4 |
|
pweq |
⊢ ( 𝑧 = 𝐴 → 𝒫 𝑧 = 𝒫 𝐴 ) |
5 |
4
|
sseq1d |
⊢ ( 𝑧 = 𝐴 → ( 𝒫 𝑧 ⊆ 𝑈 ↔ 𝒫 𝐴 ⊆ 𝑈 ) ) |
6 |
4
|
sseq1d |
⊢ ( 𝑧 = 𝐴 → ( 𝒫 𝑧 ⊆ 𝑤 ↔ 𝒫 𝐴 ⊆ 𝑤 ) ) |
7 |
|
raleq |
⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝑈 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ↔ ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ 𝑈 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) |
8 |
6 7
|
anbi12d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝑈 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ↔ ( 𝒫 𝐴 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ 𝑈 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ) |
9 |
8
|
rexbidv |
⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑤 ∈ 𝑈 ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝑈 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ↔ ∃ 𝑤 ∈ 𝑈 ( 𝒫 𝐴 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ 𝑈 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ) |
10 |
9
|
albidv |
⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑓 ∃ 𝑤 ∈ 𝑈 ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝑈 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ↔ ∀ 𝑓 ∃ 𝑤 ∈ 𝑈 ( 𝒫 𝐴 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ 𝑈 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ) |
11 |
5 10
|
anbi12d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝒫 𝑧 ⊆ 𝑈 ∧ ∀ 𝑓 ∃ 𝑤 ∈ 𝑈 ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝑈 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ↔ ( 𝒫 𝐴 ⊆ 𝑈 ∧ ∀ 𝑓 ∃ 𝑤 ∈ 𝑈 ( 𝒫 𝐴 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ 𝑈 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ) ) |
12 |
1
|
ismnu |
⊢ ( 𝑈 ∈ 𝑀 → ( 𝑈 ∈ 𝑀 ↔ ∀ 𝑧 ∈ 𝑈 ( 𝒫 𝑧 ⊆ 𝑈 ∧ ∀ 𝑓 ∃ 𝑤 ∈ 𝑈 ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝑈 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ) ) |
13 |
12
|
ibi |
⊢ ( 𝑈 ∈ 𝑀 → ∀ 𝑧 ∈ 𝑈 ( 𝒫 𝑧 ⊆ 𝑈 ∧ ∀ 𝑓 ∃ 𝑤 ∈ 𝑈 ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝑈 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ) |
14 |
2 13
|
syl |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑈 ( 𝒫 𝑧 ⊆ 𝑈 ∧ ∀ 𝑓 ∃ 𝑤 ∈ 𝑈 ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝑈 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ) |
15 |
11 14 3
|
rspcdva |
⊢ ( 𝜑 → ( 𝒫 𝐴 ⊆ 𝑈 ∧ ∀ 𝑓 ∃ 𝑤 ∈ 𝑈 ( 𝒫 𝐴 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝐴 ( ∃ 𝑣 ∈ 𝑈 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ) |