Metamath Proof Explorer


Theorem mnu0eld

Description: A nonempty minimal universe contains the empty set. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnu0eld.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
mnu0eld.2 φ U M
mnu0eld.3 φ A U
Assertion mnu0eld φ U

Proof

Step Hyp Ref Expression
1 mnu0eld.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
2 mnu0eld.2 φ U M
3 mnu0eld.3 φ A U
4 0ss A
5 4 a1i φ A
6 1 2 3 5 mnussd φ U