Description: A nonempty minimal universe contains the empty set. (Contributed by Rohan Ridenour, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mnu0eld.1 | |- M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) } |
|
mnu0eld.2 | |- ( ph -> U e. M ) |
||
mnu0eld.3 | |- ( ph -> A e. U ) |
||
Assertion | mnu0eld | |- ( ph -> (/) e. U ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnu0eld.1 | |- M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) } |
|
2 | mnu0eld.2 | |- ( ph -> U e. M ) |
|
3 | mnu0eld.3 | |- ( ph -> A e. U ) |
|
4 | 0ss | |- (/) C_ A |
|
5 | 4 | a1i | |- ( ph -> (/) C_ A ) |
6 | 1 2 3 5 | mnussd | |- ( ph -> (/) e. U ) |