Description: A nonempty minimal universe contains the empty set. (Contributed by Rohan Ridenour, 13-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mnu0eld.1 | |- M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) } |
|
| mnu0eld.2 | |- ( ph -> U e. M ) |
||
| mnu0eld.3 | |- ( ph -> A e. U ) |
||
| Assertion | mnu0eld | |- ( ph -> (/) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnu0eld.1 | |- M = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) } |
|
| 2 | mnu0eld.2 | |- ( ph -> U e. M ) |
|
| 3 | mnu0eld.3 | |- ( ph -> A e. U ) |
|
| 4 | 0ss | |- (/) C_ A |
|
| 5 | 4 | a1i | |- ( ph -> (/) C_ A ) |
| 6 | 1 2 3 5 | mnussd | |- ( ph -> (/) e. U ) |