Metamath Proof Explorer


Theorem mnu0eld

Description: A nonempty minimal universe contains the empty set. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnu0eld.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
mnu0eld.2 ( 𝜑𝑈𝑀 )
mnu0eld.3 ( 𝜑𝐴𝑈 )
Assertion mnu0eld ( 𝜑 → ∅ ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 mnu0eld.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
2 mnu0eld.2 ( 𝜑𝑈𝑀 )
3 mnu0eld.3 ( 𝜑𝐴𝑈 )
4 0ss ∅ ⊆ 𝐴
5 4 a1i ( 𝜑 → ∅ ⊆ 𝐴 )
6 1 2 3 5 mnussd ( 𝜑 → ∅ ∈ 𝑈 )