Description: A nonempty minimal universe contains the empty set. (Contributed by Rohan Ridenour, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mnu0eld.1 | ⊢ 𝑀 = { 𝑘 ∣ ∀ 𝑙 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑘 ∧ ∀ 𝑚 ∃ 𝑛 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑛 ∧ ∀ 𝑝 ∈ 𝑙 ( ∃ 𝑞 ∈ 𝑘 ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚 ) → ∃ 𝑟 ∈ 𝑚 ( 𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛 ) ) ) ) } | |
mnu0eld.2 | ⊢ ( 𝜑 → 𝑈 ∈ 𝑀 ) | ||
mnu0eld.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | ||
Assertion | mnu0eld | ⊢ ( 𝜑 → ∅ ∈ 𝑈 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnu0eld.1 | ⊢ 𝑀 = { 𝑘 ∣ ∀ 𝑙 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑘 ∧ ∀ 𝑚 ∃ 𝑛 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑛 ∧ ∀ 𝑝 ∈ 𝑙 ( ∃ 𝑞 ∈ 𝑘 ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚 ) → ∃ 𝑟 ∈ 𝑚 ( 𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛 ) ) ) ) } | |
2 | mnu0eld.2 | ⊢ ( 𝜑 → 𝑈 ∈ 𝑀 ) | |
3 | mnu0eld.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | |
4 | 0ss | ⊢ ∅ ⊆ 𝐴 | |
5 | 4 | a1i | ⊢ ( 𝜑 → ∅ ⊆ 𝐴 ) |
6 | 1 2 3 5 | mnussd | ⊢ ( 𝜑 → ∅ ∈ 𝑈 ) |