Description: Minimal universes are closed under binary unions. (Contributed by Rohan Ridenour, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mnuund.1 | ⊢ 𝑀 = { 𝑘 ∣ ∀ 𝑙 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑘 ∧ ∀ 𝑚 ∃ 𝑛 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑛 ∧ ∀ 𝑝 ∈ 𝑙 ( ∃ 𝑞 ∈ 𝑘 ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚 ) → ∃ 𝑟 ∈ 𝑚 ( 𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛 ) ) ) ) } | |
mnuund.2 | ⊢ ( 𝜑 → 𝑈 ∈ 𝑀 ) | ||
mnuund.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | ||
mnuund.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) | ||
Assertion | mnuund | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnuund.1 | ⊢ 𝑀 = { 𝑘 ∣ ∀ 𝑙 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑘 ∧ ∀ 𝑚 ∃ 𝑛 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑛 ∧ ∀ 𝑝 ∈ 𝑙 ( ∃ 𝑞 ∈ 𝑘 ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚 ) → ∃ 𝑟 ∈ 𝑚 ( 𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛 ) ) ) ) } | |
2 | mnuund.2 | ⊢ ( 𝜑 → 𝑈 ∈ 𝑀 ) | |
3 | mnuund.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) | |
4 | mnuund.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) | |
5 | uniprg | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) | |
6 | 3 4 5 | syl2anc | ⊢ ( 𝜑 → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
7 | 1 2 3 4 | mnuprd | ⊢ ( 𝜑 → { 𝐴 , 𝐵 } ∈ 𝑈 ) |
8 | 1 2 7 | mnuunid | ⊢ ( 𝜑 → ∪ { 𝐴 , 𝐵 } ∈ 𝑈 ) |
9 | 6 8 | eqeltrrd | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ) |