Metamath Proof Explorer


Theorem mnuund

Description: Minimal universes are closed under binary unions. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnuund.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
mnuund.2 ( 𝜑𝑈𝑀 )
mnuund.3 ( 𝜑𝐴𝑈 )
mnuund.4 ( 𝜑𝐵𝑈 )
Assertion mnuund ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 mnuund.1 𝑀 = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
2 mnuund.2 ( 𝜑𝑈𝑀 )
3 mnuund.3 ( 𝜑𝐴𝑈 )
4 mnuund.4 ( 𝜑𝐵𝑈 )
5 uniprg ( ( 𝐴𝑈𝐵𝑈 ) → { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
6 3 4 5 syl2anc ( 𝜑 { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
7 1 2 3 4 mnuprd ( 𝜑 → { 𝐴 , 𝐵 } ∈ 𝑈 )
8 1 2 7 mnuunid ( 𝜑 { 𝐴 , 𝐵 } ∈ 𝑈 )
9 6 8 eqeltrrd ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝑈 )