Metamath Proof Explorer


Theorem mnuund

Description: Minimal universes are closed under binary unions. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnuund.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
mnuund.2 φ U M
mnuund.3 φ A U
mnuund.4 φ B U
Assertion mnuund φ A B U

Proof

Step Hyp Ref Expression
1 mnuund.1 M = k | l k 𝒫 l k m n k 𝒫 l n p l q k p q q m r m p r r n
2 mnuund.2 φ U M
3 mnuund.3 φ A U
4 mnuund.4 φ B U
5 uniprg A U B U A B = A B
6 3 4 5 syl2anc φ A B = A B
7 1 2 3 4 mnuprd φ A B U
8 1 2 7 mnuunid φ A B U
9 6 8 eqeltrrd φ A B U