Metamath Proof Explorer


Theorem mnuund

Description: Minimal universes are closed under binary unions. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnuund.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
mnuund.2 φUM
mnuund.3 φAU
mnuund.4 φBU
Assertion mnuund φABU

Proof

Step Hyp Ref Expression
1 mnuund.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
2 mnuund.2 φUM
3 mnuund.3 φAU
4 mnuund.4 φBU
5 uniprg AUBUAB=AB
6 3 4 5 syl2anc φAB=AB
7 1 2 3 4 mnuprd φABU
8 1 2 7 mnuunid φABU
9 6 8 eqeltrrd φABU