Description: Assuming the Tarski-Grothendieck axiom, every set is contained in a Grothendieck universe. (Contributed by Rohan Ridenour, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | gruex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankon | |
|
2 | inaex | |
|
3 | 1 2 | ax-mp | |
4 | simplr | |
|
5 | inawina | |
|
6 | winaon | |
|
7 | 5 6 | syl | |
8 | 7 | ad2antrr | |
9 | vex | |
|
10 | 9 | rankr1a | |
11 | 8 10 | syl | |
12 | 4 11 | mpbird | |
13 | simpr | |
|
14 | 12 13 | eleqtrrd | |
15 | simpl | |
|
16 | 15 | inagrud | |
17 | 14 16 | rspcime | |
18 | 17 | rexlimiva | |
19 | 3 18 | ax-mp | |