Metamath Proof Explorer


Theorem gruex

Description: Assuming the Tarski-Grothendieck axiom, every set is contained in a Grothendieck universe. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Assertion gruex yUnivxy

Proof

Step Hyp Ref Expression
1 rankon rankxOn
2 inaex rankxOnzInaccrankxz
3 1 2 ax-mp zInaccrankxz
4 simplr zInaccrankxzy=R1zrankxz
5 inawina zInacczInacc𝑤
6 winaon zInacc𝑤zOn
7 5 6 syl zInacczOn
8 7 ad2antrr zInaccrankxzy=R1zzOn
9 vex xV
10 9 rankr1a zOnxR1zrankxz
11 8 10 syl zInaccrankxzy=R1zxR1zrankxz
12 4 11 mpbird zInaccrankxzy=R1zxR1z
13 simpr zInaccrankxzy=R1zy=R1z
14 12 13 eleqtrrd zInaccrankxzy=R1zxy
15 simpl zInaccrankxzzInacc
16 15 inagrud zInaccrankxzR1zUniv
17 14 16 rspcime zInaccrankxzyUnivxy
18 17 rexlimiva zInaccrankxzyUnivxy
19 3 18 ax-mp yUnivxy