Metamath Proof Explorer


Theorem gruex

Description: Assuming the Tarski-Grothendieck axiom, every set is contained in a Grothendieck universe. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Assertion gruex y Univ x y

Proof

Step Hyp Ref Expression
1 rankon rank x On
2 inaex rank x On z Inacc rank x z
3 1 2 ax-mp z Inacc rank x z
4 simplr z Inacc rank x z y = R1 z rank x z
5 inawina z Inacc z Inacc 𝑤
6 winaon z Inacc 𝑤 z On
7 5 6 syl z Inacc z On
8 7 ad2antrr z Inacc rank x z y = R1 z z On
9 vex x V
10 9 rankr1a z On x R1 z rank x z
11 8 10 syl z Inacc rank x z y = R1 z x R1 z rank x z
12 4 11 mpbird z Inacc rank x z y = R1 z x R1 z
13 simpr z Inacc rank x z y = R1 z y = R1 z
14 12 13 eleqtrrd z Inacc rank x z y = R1 z x y
15 simpl z Inacc rank x z z Inacc
16 15 inagrud z Inacc rank x z R1 z Univ
17 14 16 rspcime z Inacc rank x z y Univ x y
18 17 rexlimiva z Inacc rank x z y Univ x y
19 3 18 ax-mp y Univ x y