Metamath Proof Explorer


Theorem inawina

Description: Every strongly inaccessible cardinal is weakly inaccessible. (Contributed by Mario Carneiro, 29-May-2014)

Ref Expression
Assertion inawina AInaccAInacc𝑤

Proof

Step Hyp Ref Expression
1 cfon cfAOn
2 eleq1 cfA=AcfAOnAOn
3 1 2 mpbii cfA=AAOn
4 3 3ad2ant2 AcfA=AxA𝒫xAAOn
5 idd AOnAA
6 idd AOncfA=AcfA=A
7 inawinalem AOnxA𝒫xAxAyAxy
8 5 6 7 3anim123d AOnAcfA=AxA𝒫xAAcfA=AxAyAxy
9 4 8 mpcom AcfA=AxA𝒫xAAcfA=AxAyAxy
10 elina AInaccAcfA=AxA𝒫xA
11 elwina AInacc𝑤AcfA=AxAyAxy
12 9 10 11 3imtr4i AInaccAInacc𝑤