| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cfon |
|- ( cf ` A ) e. On |
| 2 |
|
eleq1 |
|- ( ( cf ` A ) = A -> ( ( cf ` A ) e. On <-> A e. On ) ) |
| 3 |
1 2
|
mpbii |
|- ( ( cf ` A ) = A -> A e. On ) |
| 4 |
3
|
3ad2ant2 |
|- ( ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A ~P x ~< A ) -> A e. On ) |
| 5 |
|
idd |
|- ( A e. On -> ( A =/= (/) -> A =/= (/) ) ) |
| 6 |
|
idd |
|- ( A e. On -> ( ( cf ` A ) = A -> ( cf ` A ) = A ) ) |
| 7 |
|
inawinalem |
|- ( A e. On -> ( A. x e. A ~P x ~< A -> A. x e. A E. y e. A x ~< y ) ) |
| 8 |
5 6 7
|
3anim123d |
|- ( A e. On -> ( ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A ~P x ~< A ) -> ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A E. y e. A x ~< y ) ) ) |
| 9 |
4 8
|
mpcom |
|- ( ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A ~P x ~< A ) -> ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A E. y e. A x ~< y ) ) |
| 10 |
|
elina |
|- ( A e. Inacc <-> ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A ~P x ~< A ) ) |
| 11 |
|
elwina |
|- ( A e. InaccW <-> ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A E. y e. A x ~< y ) ) |
| 12 |
9 10 11
|
3imtr4i |
|- ( A e. Inacc -> A e. InaccW ) |