Metamath Proof Explorer


Theorem omina

Description: _om is a strongly inaccessible cardinal. (Many definitions of "inaccessible" explicitly disallow _om as an inaccessible cardinal, but this choice allows us to reuse our results for inaccessibles for _om .) (Contributed by Mario Carneiro, 29-May-2014)

Ref Expression
Assertion omina
|- _om e. Inacc

Proof

Step Hyp Ref Expression
1 peano1
 |-  (/) e. _om
2 1 ne0ii
 |-  _om =/= (/)
3 cfom
 |-  ( cf ` _om ) = _om
4 nnfi
 |-  ( x e. _om -> x e. Fin )
5 pwfi
 |-  ( x e. Fin <-> ~P x e. Fin )
6 4 5 sylib
 |-  ( x e. _om -> ~P x e. Fin )
7 isfinite
 |-  ( ~P x e. Fin <-> ~P x ~< _om )
8 6 7 sylib
 |-  ( x e. _om -> ~P x ~< _om )
9 8 rgen
 |-  A. x e. _om ~P x ~< _om
10 elina
 |-  ( _om e. Inacc <-> ( _om =/= (/) /\ ( cf ` _om ) = _om /\ A. x e. _om ~P x ~< _om ) )
11 2 3 9 10 mpbir3an
 |-  _om e. Inacc