Metamath Proof Explorer


Theorem elina

Description: Conditions of strong inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013)

Ref Expression
Assertion elina AInaccAcfA=AxA𝒫xA

Proof

Step Hyp Ref Expression
1 elex AInaccAV
2 fvex cfAV
3 eleq1 cfA=AcfAVAV
4 2 3 mpbii cfA=AAV
5 4 3ad2ant2 AcfA=AxA𝒫xAAV
6 neeq1 y=AyA
7 fveq2 y=Acfy=cfA
8 eqeq12 cfy=cfAy=Acfy=ycfA=A
9 7 8 mpancom y=Acfy=ycfA=A
10 breq2 y=A𝒫xy𝒫xA
11 10 raleqbi1dv y=Axy𝒫xyxA𝒫xA
12 6 9 11 3anbi123d y=Aycfy=yxy𝒫xyAcfA=AxA𝒫xA
13 df-ina Inacc=y|ycfy=yxy𝒫xy
14 12 13 elab2g AVAInaccAcfA=AxA𝒫xA
15 1 5 14 pm5.21nii AInaccAcfA=AxA𝒫xA