Metamath Proof Explorer


Theorem winaon

Description: A weakly inaccessible cardinal is an ordinal. (Contributed by Mario Carneiro, 29-May-2014)

Ref Expression
Assertion winaon AInacc𝑤AOn

Proof

Step Hyp Ref Expression
1 elwina AInacc𝑤AcfA=AxAyAxy
2 cfon cfAOn
3 eleq1 cfA=AcfAOnAOn
4 2 3 mpbii cfA=AAOn
5 4 3ad2ant2 AcfA=AxAyAxyAOn
6 1 5 sylbi AInacc𝑤AOn