Metamath Proof Explorer


Theorem elwina

Description: Conditions of weak inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013)

Ref Expression
Assertion elwina AInacc𝑤AcfA=AxAyAxy

Proof

Step Hyp Ref Expression
1 elex AInacc𝑤AV
2 fvex cfAV
3 eleq1 cfA=AcfAVAV
4 2 3 mpbii cfA=AAV
5 4 3ad2ant2 AcfA=AxAyAxyAV
6 neeq1 z=AzA
7 fveq2 z=Acfz=cfA
8 eqeq12 cfz=cfAz=Acfz=zcfA=A
9 7 8 mpancom z=Acfz=zcfA=A
10 rexeq z=AyzxyyAxy
11 10 raleqbi1dv z=AxzyzxyxAyAxy
12 6 9 11 3anbi123d z=Azcfz=zxzyzxyAcfA=AxAyAxy
13 df-wina Inacc𝑤=z|zcfz=zxzyzxy
14 12 13 elab2g AVAInacc𝑤AcfA=AxAyAxy
15 1 5 14 pm5.21nii AInacc𝑤AcfA=AxAyAxy