Metamath Proof Explorer


Definition df-ina

Description: An ordinal is strongly inaccessible iff it is a regular strong limit cardinal, which is to say that it dominates the powersets of every smaller ordinal. (Contributed by Mario Carneiro, 22-Jun-2013)

Ref Expression
Assertion df-ina Inacc=x|xcfx=xyx𝒫yx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cina classInacc
1 vx setvarx
2 1 cv setvarx
3 c0 class
4 2 3 wne wffx
5 ccf classcf
6 2 5 cfv classcfx
7 6 2 wceq wffcfx=x
8 vy setvary
9 8 cv setvary
10 9 cpw class𝒫y
11 csdm class
12 10 2 11 wbr wff𝒫yx
13 12 8 2 wral wffyx𝒫yx
14 4 7 13 w3a wffxcfx=xyx𝒫yx
15 14 1 cab classx|xcfx=xyx𝒫yx
16 0 15 wceq wffInacc=x|xcfx=xyx𝒫yx