Metamath Proof Explorer


Theorem gruex

Description: Assuming the Tarski-Grothendieck axiom, every set is contained in a Grothendieck universe. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Assertion gruex 𝑦 ∈ Univ 𝑥𝑦

Proof

Step Hyp Ref Expression
1 rankon ( rank ‘ 𝑥 ) ∈ On
2 inaex ( ( rank ‘ 𝑥 ) ∈ On → ∃ 𝑧 ∈ Inacc ( rank ‘ 𝑥 ) ∈ 𝑧 )
3 1 2 ax-mp 𝑧 ∈ Inacc ( rank ‘ 𝑥 ) ∈ 𝑧
4 simplr ( ( ( 𝑧 ∈ Inacc ∧ ( rank ‘ 𝑥 ) ∈ 𝑧 ) ∧ 𝑦 = ( 𝑅1𝑧 ) ) → ( rank ‘ 𝑥 ) ∈ 𝑧 )
5 inawina ( 𝑧 ∈ Inacc → 𝑧 ∈ Inaccw )
6 winaon ( 𝑧 ∈ Inaccw𝑧 ∈ On )
7 5 6 syl ( 𝑧 ∈ Inacc → 𝑧 ∈ On )
8 7 ad2antrr ( ( ( 𝑧 ∈ Inacc ∧ ( rank ‘ 𝑥 ) ∈ 𝑧 ) ∧ 𝑦 = ( 𝑅1𝑧 ) ) → 𝑧 ∈ On )
9 vex 𝑥 ∈ V
10 9 rankr1a ( 𝑧 ∈ On → ( 𝑥 ∈ ( 𝑅1𝑧 ) ↔ ( rank ‘ 𝑥 ) ∈ 𝑧 ) )
11 8 10 syl ( ( ( 𝑧 ∈ Inacc ∧ ( rank ‘ 𝑥 ) ∈ 𝑧 ) ∧ 𝑦 = ( 𝑅1𝑧 ) ) → ( 𝑥 ∈ ( 𝑅1𝑧 ) ↔ ( rank ‘ 𝑥 ) ∈ 𝑧 ) )
12 4 11 mpbird ( ( ( 𝑧 ∈ Inacc ∧ ( rank ‘ 𝑥 ) ∈ 𝑧 ) ∧ 𝑦 = ( 𝑅1𝑧 ) ) → 𝑥 ∈ ( 𝑅1𝑧 ) )
13 simpr ( ( ( 𝑧 ∈ Inacc ∧ ( rank ‘ 𝑥 ) ∈ 𝑧 ) ∧ 𝑦 = ( 𝑅1𝑧 ) ) → 𝑦 = ( 𝑅1𝑧 ) )
14 12 13 eleqtrrd ( ( ( 𝑧 ∈ Inacc ∧ ( rank ‘ 𝑥 ) ∈ 𝑧 ) ∧ 𝑦 = ( 𝑅1𝑧 ) ) → 𝑥𝑦 )
15 simpl ( ( 𝑧 ∈ Inacc ∧ ( rank ‘ 𝑥 ) ∈ 𝑧 ) → 𝑧 ∈ Inacc )
16 15 inagrud ( ( 𝑧 ∈ Inacc ∧ ( rank ‘ 𝑥 ) ∈ 𝑧 ) → ( 𝑅1𝑧 ) ∈ Univ )
17 14 16 rspcime ( ( 𝑧 ∈ Inacc ∧ ( rank ‘ 𝑥 ) ∈ 𝑧 ) → ∃ 𝑦 ∈ Univ 𝑥𝑦 )
18 17 rexlimiva ( ∃ 𝑧 ∈ Inacc ( rank ‘ 𝑥 ) ∈ 𝑧 → ∃ 𝑦 ∈ Univ 𝑥𝑦 )
19 3 18 ax-mp 𝑦 ∈ Univ 𝑥𝑦