| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rankon |
⊢ ( rank ‘ 𝑥 ) ∈ On |
| 2 |
|
inaex |
⊢ ( ( rank ‘ 𝑥 ) ∈ On → ∃ 𝑧 ∈ Inacc ( rank ‘ 𝑥 ) ∈ 𝑧 ) |
| 3 |
1 2
|
ax-mp |
⊢ ∃ 𝑧 ∈ Inacc ( rank ‘ 𝑥 ) ∈ 𝑧 |
| 4 |
|
simplr |
⊢ ( ( ( 𝑧 ∈ Inacc ∧ ( rank ‘ 𝑥 ) ∈ 𝑧 ) ∧ 𝑦 = ( 𝑅1 ‘ 𝑧 ) ) → ( rank ‘ 𝑥 ) ∈ 𝑧 ) |
| 5 |
|
inawina |
⊢ ( 𝑧 ∈ Inacc → 𝑧 ∈ Inaccw ) |
| 6 |
|
winaon |
⊢ ( 𝑧 ∈ Inaccw → 𝑧 ∈ On ) |
| 7 |
5 6
|
syl |
⊢ ( 𝑧 ∈ Inacc → 𝑧 ∈ On ) |
| 8 |
7
|
ad2antrr |
⊢ ( ( ( 𝑧 ∈ Inacc ∧ ( rank ‘ 𝑥 ) ∈ 𝑧 ) ∧ 𝑦 = ( 𝑅1 ‘ 𝑧 ) ) → 𝑧 ∈ On ) |
| 9 |
|
vex |
⊢ 𝑥 ∈ V |
| 10 |
9
|
rankr1a |
⊢ ( 𝑧 ∈ On → ( 𝑥 ∈ ( 𝑅1 ‘ 𝑧 ) ↔ ( rank ‘ 𝑥 ) ∈ 𝑧 ) ) |
| 11 |
8 10
|
syl |
⊢ ( ( ( 𝑧 ∈ Inacc ∧ ( rank ‘ 𝑥 ) ∈ 𝑧 ) ∧ 𝑦 = ( 𝑅1 ‘ 𝑧 ) ) → ( 𝑥 ∈ ( 𝑅1 ‘ 𝑧 ) ↔ ( rank ‘ 𝑥 ) ∈ 𝑧 ) ) |
| 12 |
4 11
|
mpbird |
⊢ ( ( ( 𝑧 ∈ Inacc ∧ ( rank ‘ 𝑥 ) ∈ 𝑧 ) ∧ 𝑦 = ( 𝑅1 ‘ 𝑧 ) ) → 𝑥 ∈ ( 𝑅1 ‘ 𝑧 ) ) |
| 13 |
|
simpr |
⊢ ( ( ( 𝑧 ∈ Inacc ∧ ( rank ‘ 𝑥 ) ∈ 𝑧 ) ∧ 𝑦 = ( 𝑅1 ‘ 𝑧 ) ) → 𝑦 = ( 𝑅1 ‘ 𝑧 ) ) |
| 14 |
12 13
|
eleqtrrd |
⊢ ( ( ( 𝑧 ∈ Inacc ∧ ( rank ‘ 𝑥 ) ∈ 𝑧 ) ∧ 𝑦 = ( 𝑅1 ‘ 𝑧 ) ) → 𝑥 ∈ 𝑦 ) |
| 15 |
|
simpl |
⊢ ( ( 𝑧 ∈ Inacc ∧ ( rank ‘ 𝑥 ) ∈ 𝑧 ) → 𝑧 ∈ Inacc ) |
| 16 |
15
|
inagrud |
⊢ ( ( 𝑧 ∈ Inacc ∧ ( rank ‘ 𝑥 ) ∈ 𝑧 ) → ( 𝑅1 ‘ 𝑧 ) ∈ Univ ) |
| 17 |
14 16
|
rspcime |
⊢ ( ( 𝑧 ∈ Inacc ∧ ( rank ‘ 𝑥 ) ∈ 𝑧 ) → ∃ 𝑦 ∈ Univ 𝑥 ∈ 𝑦 ) |
| 18 |
17
|
rexlimiva |
⊢ ( ∃ 𝑧 ∈ Inacc ( rank ‘ 𝑥 ) ∈ 𝑧 → ∃ 𝑦 ∈ Univ 𝑥 ∈ 𝑦 ) |
| 19 |
3 18
|
ax-mp |
⊢ ∃ 𝑦 ∈ Univ 𝑥 ∈ 𝑦 |