Step |
Hyp |
Ref |
Expression |
1 |
|
gruex |
⊢ ∃ 𝑦 ∈ Univ 𝑥 ∈ 𝑦 |
2 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ Univ 𝑥 ∈ 𝑦 ↔ ∃ 𝑦 ( 𝑦 ∈ Univ ∧ 𝑥 ∈ 𝑦 ) ) |
3 |
|
exancom |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ Univ ∧ 𝑥 ∈ 𝑦 ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ Univ ) ) |
4 |
|
grumnueq |
⊢ Univ = { 𝑘 ∣ ∀ 𝑙 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑘 ∧ ∀ 𝑚 ∃ 𝑛 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑛 ∧ ∀ 𝑝 ∈ 𝑙 ( ∃ 𝑞 ∈ 𝑘 ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚 ) → ∃ 𝑟 ∈ 𝑚 ( 𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛 ) ) ) ) } |
5 |
4
|
ismnu |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ Univ ↔ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∀ 𝑓 ∃ 𝑤 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝑦 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ) ) |
6 |
5
|
elv |
⊢ ( 𝑦 ∈ Univ ↔ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∀ 𝑓 ∃ 𝑤 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝑦 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ) |
7 |
6
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ Univ ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∀ 𝑓 ∃ 𝑤 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝑦 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ) ) |
8 |
7
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ Univ ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∀ 𝑓 ∃ 𝑤 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝑦 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ) ) |
9 |
2 3 8
|
3bitri |
⊢ ( ∃ 𝑦 ∈ Univ 𝑥 ∈ 𝑦 ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∀ 𝑓 ∃ 𝑤 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝑦 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ) ) |
10 |
1 9
|
mpbi |
⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∀ 𝑓 ∃ 𝑤 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝑦 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ) |