Metamath Proof Explorer


Theorem rr-groth

Description: An equivalent of ax-groth using only simple defined symbols. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Assertion rr-groth 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∀ 𝑓𝑤𝑦 ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝑦 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 gruex 𝑦 ∈ Univ 𝑥𝑦
2 df-rex ( ∃ 𝑦 ∈ Univ 𝑥𝑦 ↔ ∃ 𝑦 ( 𝑦 ∈ Univ ∧ 𝑥𝑦 ) )
3 exancom ( ∃ 𝑦 ( 𝑦 ∈ Univ ∧ 𝑥𝑦 ) ↔ ∃ 𝑦 ( 𝑥𝑦𝑦 ∈ Univ ) )
4 grumnueq Univ = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
5 4 ismnu ( 𝑦 ∈ V → ( 𝑦 ∈ Univ ↔ ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∀ 𝑓𝑤𝑦 ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝑦 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) ) )
6 5 elv ( 𝑦 ∈ Univ ↔ ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∀ 𝑓𝑤𝑦 ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝑦 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) )
7 6 anbi2i ( ( 𝑥𝑦𝑦 ∈ Univ ) ↔ ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∀ 𝑓𝑤𝑦 ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝑦 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) ) )
8 7 exbii ( ∃ 𝑦 ( 𝑥𝑦𝑦 ∈ Univ ) ↔ ∃ 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∀ 𝑓𝑤𝑦 ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝑦 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) ) )
9 2 3 8 3bitri ( ∃ 𝑦 ∈ Univ 𝑥𝑦 ↔ ∃ 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∀ 𝑓𝑤𝑦 ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝑦 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) ) )
10 1 9 mpbi 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∀ 𝑓𝑤𝑦 ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝑦 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) )