| Step |
Hyp |
Ref |
Expression |
| 0 |
|
vy |
⊢ 𝑦 |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
1
|
cv |
⊢ 𝑥 |
| 3 |
0
|
cv |
⊢ 𝑦 |
| 4 |
2 3
|
wcel |
⊢ 𝑥 ∈ 𝑦 |
| 5 |
|
vz |
⊢ 𝑧 |
| 6 |
|
vw |
⊢ 𝑤 |
| 7 |
6
|
cv |
⊢ 𝑤 |
| 8 |
5
|
cv |
⊢ 𝑧 |
| 9 |
7 8
|
wss |
⊢ 𝑤 ⊆ 𝑧 |
| 10 |
7 3
|
wcel |
⊢ 𝑤 ∈ 𝑦 |
| 11 |
9 10
|
wi |
⊢ ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) |
| 12 |
11 6
|
wal |
⊢ ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) |
| 13 |
|
vv |
⊢ 𝑣 |
| 14 |
13
|
cv |
⊢ 𝑣 |
| 15 |
14 8
|
wss |
⊢ 𝑣 ⊆ 𝑧 |
| 16 |
14 7
|
wcel |
⊢ 𝑣 ∈ 𝑤 |
| 17 |
15 16
|
wi |
⊢ ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) |
| 18 |
17 13
|
wal |
⊢ ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) |
| 19 |
18 6 3
|
wrex |
⊢ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) |
| 20 |
12 19
|
wa |
⊢ ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) |
| 21 |
20 5 3
|
wral |
⊢ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) |
| 22 |
8 3
|
wss |
⊢ 𝑧 ⊆ 𝑦 |
| 23 |
|
cen |
⊢ ≈ |
| 24 |
8 3 23
|
wbr |
⊢ 𝑧 ≈ 𝑦 |
| 25 |
8 3
|
wcel |
⊢ 𝑧 ∈ 𝑦 |
| 26 |
24 25
|
wo |
⊢ ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) |
| 27 |
22 26
|
wi |
⊢ ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) |
| 28 |
27 5
|
wal |
⊢ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) |
| 29 |
4 21 28
|
w3a |
⊢ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 30 |
29 0
|
wex |
⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦 ) ∧ ∃ 𝑤 ∈ 𝑦 ∀ 𝑣 ( 𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) ) |