| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axgroth4 |
⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 2 |
|
3anass |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ( ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) ) |
| 3 |
|
df-ss |
⊢ ( 𝑤 ⊆ 𝑧 ↔ ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) ) |
| 4 |
|
elin |
⊢ ( 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ↔ ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) |
| 5 |
3 4
|
imbi12i |
⊢ ( ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ↔ ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 6 |
5
|
albii |
⊢ ( ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ↔ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 7 |
6
|
rexbii |
⊢ ( ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ↔ ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 8 |
|
df-rex |
⊢ ( ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ↔ ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
| 9 |
7 8
|
bitri |
⊢ ( ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ↔ ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
| 10 |
9
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ↔ ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) |
| 11 |
|
df-ral |
⊢ ( ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ) |
| 12 |
10 11
|
bitri |
⊢ ( ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ) |
| 13 |
|
df-ss |
⊢ ( 𝑧 ⊆ 𝑦 ↔ ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) ) |
| 14 |
|
vex |
⊢ 𝑦 ∈ V |
| 15 |
14
|
difexi |
⊢ ( 𝑦 ∖ 𝑧 ) ∈ V |
| 16 |
|
vex |
⊢ 𝑧 ∈ V |
| 17 |
|
disjdifr |
⊢ ( ( 𝑦 ∖ 𝑧 ) ∩ 𝑧 ) = ∅ |
| 18 |
15 16 17
|
brdom6disj |
⊢ ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ↔ ∃ 𝑤 ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ) |
| 19 |
18
|
orbi1i |
⊢ ( ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ↔ ( ∃ 𝑤 ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ∨ 𝑧 ∈ 𝑦 ) ) |
| 20 |
|
19.44v |
⊢ ( ∃ 𝑤 ( ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ∨ 𝑧 ∈ 𝑦 ) ↔ ( ∃ 𝑤 ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ∨ 𝑧 ∈ 𝑦 ) ) |
| 21 |
19 20
|
bitr4i |
⊢ ( ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ↔ ∃ 𝑤 ( ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ∨ 𝑧 ∈ 𝑦 ) ) |
| 22 |
13 21
|
imbi12i |
⊢ ( ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ∃ 𝑤 ( ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 23 |
|
19.35 |
⊢ ( ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ∨ 𝑧 ∈ 𝑦 ) ) ↔ ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ∃ 𝑤 ( ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 24 |
22 23
|
bitr4i |
⊢ ( ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 25 |
|
grothprimlem |
⊢ ( { 𝑣 , 𝑢 } ∈ 𝑤 ↔ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) ) |
| 26 |
25
|
mobii |
⊢ ( ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ↔ ∃* 𝑢 ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) ) |
| 27 |
|
df-mo |
⊢ ( ∃* 𝑢 ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) ↔ ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) |
| 28 |
26 27
|
bitri |
⊢ ( ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ↔ ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) |
| 29 |
28
|
ralbii |
⊢ ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ↔ ∀ 𝑣 ∈ 𝑧 ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) |
| 30 |
|
df-ral |
⊢ ( ∀ 𝑣 ∈ 𝑧 ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ↔ ∀ 𝑣 ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ) |
| 31 |
29 30
|
bitri |
⊢ ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ↔ ∀ 𝑣 ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ) |
| 32 |
|
df-ral |
⊢ ( ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ↔ ∀ 𝑣 ( 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) → ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ) |
| 33 |
|
eldif |
⊢ ( 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ↔ ( 𝑣 ∈ 𝑦 ∧ ¬ 𝑣 ∈ 𝑧 ) ) |
| 34 |
|
grothprimlem |
⊢ ( { 𝑢 , 𝑣 } ∈ 𝑤 ↔ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) |
| 35 |
34
|
rexbii |
⊢ ( ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ↔ ∃ 𝑢 ∈ 𝑧 ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) |
| 36 |
|
df-rex |
⊢ ( ∃ 𝑢 ∈ 𝑧 ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ↔ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) |
| 37 |
35 36
|
bitri |
⊢ ( ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ↔ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) |
| 38 |
33 37
|
imbi12i |
⊢ ( ( 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) → ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ↔ ( ( 𝑣 ∈ 𝑦 ∧ ¬ 𝑣 ∈ 𝑧 ) → ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) |
| 39 |
|
pm5.6 |
⊢ ( ( ( 𝑣 ∈ 𝑦 ∧ ¬ 𝑣 ∈ 𝑧 ) → ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ↔ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) |
| 40 |
38 39
|
bitri |
⊢ ( ( 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) → ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ↔ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) |
| 41 |
40
|
albii |
⊢ ( ∀ 𝑣 ( 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) → ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ↔ ∀ 𝑣 ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) |
| 42 |
32 41
|
bitri |
⊢ ( ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ↔ ∀ 𝑣 ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) |
| 43 |
31 42
|
anbi12i |
⊢ ( ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ↔ ( ∀ 𝑣 ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ∀ 𝑣 ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ) |
| 44 |
|
19.26 |
⊢ ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ↔ ( ∀ 𝑣 ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ∀ 𝑣 ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ) |
| 45 |
43 44
|
bitr4i |
⊢ ( ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ↔ ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ) |
| 46 |
45
|
orbi1i |
⊢ ( ( ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ∨ 𝑧 ∈ 𝑦 ) ↔ ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) |
| 47 |
46
|
imbi2i |
⊢ ( ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ∨ 𝑧 ∈ 𝑦 ) ) ↔ ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 48 |
47
|
exbii |
⊢ ( ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ( ∀ 𝑣 ∈ 𝑧 ∃* 𝑢 { 𝑣 , 𝑢 } ∈ 𝑤 ∧ ∀ 𝑣 ∈ ( 𝑦 ∖ 𝑧 ) ∃ 𝑢 ∈ 𝑧 { 𝑢 , 𝑣 } ∈ 𝑤 ) ∨ 𝑧 ∈ 𝑦 ) ) ↔ ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 49 |
24 48
|
bitri |
⊢ ( ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 50 |
49
|
albii |
⊢ ( ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ↔ ∀ 𝑧 ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) |
| 51 |
12 50
|
anbi12i |
⊢ ( ( ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ∧ ∀ 𝑧 ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
| 52 |
|
19.26 |
⊢ ( ∀ 𝑧 ( ( 𝑧 ∈ 𝑦 → ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ∧ ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ∧ ∀ 𝑧 ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
| 53 |
51 52
|
bitr4i |
⊢ ( ( ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ∀ 𝑧 ( ( 𝑧 ∈ 𝑦 → ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ∧ ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) ) |
| 54 |
53
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( ( 𝑧 ∈ 𝑦 → ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ∧ ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) ) ) |
| 55 |
2 54
|
bitri |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( ( 𝑧 ∈ 𝑦 → ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ∧ ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) ) ) |
| 56 |
55
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ∃ 𝑣 ∈ 𝑦 ∀ 𝑤 ( 𝑤 ⊆ 𝑧 → 𝑤 ∈ ( 𝑦 ∩ 𝑣 ) ) ∧ ∀ 𝑧 ( 𝑧 ⊆ 𝑦 → ( ( 𝑦 ∖ 𝑧 ) ≼ 𝑧 ∨ 𝑧 ∈ 𝑦 ) ) ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( ( 𝑧 ∈ 𝑦 → ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ∧ ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) ) ) |
| 57 |
1 56
|
mpbi |
⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( ( 𝑧 ∈ 𝑦 → ∃ 𝑣 ( 𝑣 ∈ 𝑦 ∧ ∀ 𝑤 ( ∀ 𝑢 ( 𝑢 ∈ 𝑤 → 𝑢 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝑣 ) ) ) ) ∧ ∃ 𝑤 ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑦 ) → ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑧 → ∃ 𝑡 ∀ 𝑢 ( ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑣 ∨ ℎ = 𝑢 ) ) ) → 𝑢 = 𝑡 ) ) ∧ ( 𝑣 ∈ 𝑦 → ( 𝑣 ∈ 𝑧 ∨ ∃ 𝑢 ( 𝑢 ∈ 𝑧 ∧ ∃ 𝑔 ( 𝑔 ∈ 𝑤 ∧ ∀ ℎ ( ℎ ∈ 𝑔 ↔ ( ℎ = 𝑢 ∨ ℎ = 𝑣 ) ) ) ) ) ) ) ∨ 𝑧 ∈ 𝑦 ) ) ) ) |