Metamath Proof Explorer


Theorem grothtsk

Description: The Tarski-Grothendieck Axiom, using abbreviations. (Contributed by Mario Carneiro, 28-May-2013)

Ref Expression
Assertion grothtsk Tarski = V

Proof

Step Hyp Ref Expression
1 axgroth5 𝑥 ( 𝑤𝑥 ∧ ∀ 𝑦𝑥 ( 𝒫 𝑦𝑥 ∧ ∃ 𝑧𝑥 𝒫 𝑦𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦𝑥𝑦𝑥 ) )
2 eltskg ( 𝑥 ∈ V → ( 𝑥 ∈ Tarski ↔ ( ∀ 𝑦𝑥 ( 𝒫 𝑦𝑥 ∧ ∃ 𝑧𝑥 𝒫 𝑦𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦𝑥𝑦𝑥 ) ) ) )
3 2 elv ( 𝑥 ∈ Tarski ↔ ( ∀ 𝑦𝑥 ( 𝒫 𝑦𝑥 ∧ ∃ 𝑧𝑥 𝒫 𝑦𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦𝑥𝑦𝑥 ) ) )
4 3 anbi2i ( ( 𝑤𝑥𝑥 ∈ Tarski ) ↔ ( 𝑤𝑥 ∧ ( ∀ 𝑦𝑥 ( 𝒫 𝑦𝑥 ∧ ∃ 𝑧𝑥 𝒫 𝑦𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦𝑥𝑦𝑥 ) ) ) )
5 3anass ( ( 𝑤𝑥 ∧ ∀ 𝑦𝑥 ( 𝒫 𝑦𝑥 ∧ ∃ 𝑧𝑥 𝒫 𝑦𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦𝑥𝑦𝑥 ) ) ↔ ( 𝑤𝑥 ∧ ( ∀ 𝑦𝑥 ( 𝒫 𝑦𝑥 ∧ ∃ 𝑧𝑥 𝒫 𝑦𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦𝑥𝑦𝑥 ) ) ) )
6 4 5 bitr4i ( ( 𝑤𝑥𝑥 ∈ Tarski ) ↔ ( 𝑤𝑥 ∧ ∀ 𝑦𝑥 ( 𝒫 𝑦𝑥 ∧ ∃ 𝑧𝑥 𝒫 𝑦𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦𝑥𝑦𝑥 ) ) )
7 6 exbii ( ∃ 𝑥 ( 𝑤𝑥𝑥 ∈ Tarski ) ↔ ∃ 𝑥 ( 𝑤𝑥 ∧ ∀ 𝑦𝑥 ( 𝒫 𝑦𝑥 ∧ ∃ 𝑧𝑥 𝒫 𝑦𝑧 ) ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦𝑥𝑦𝑥 ) ) )
8 1 7 mpbir 𝑥 ( 𝑤𝑥𝑥 ∈ Tarski )
9 eluni ( 𝑤 Tarski ↔ ∃ 𝑥 ( 𝑤𝑥𝑥 ∈ Tarski ) )
10 8 9 mpbir 𝑤 Tarski
11 vex 𝑤 ∈ V
12 10 11 2th ( 𝑤 Tarski ↔ 𝑤 ∈ V )
13 12 eqriv Tarski = V