Metamath Proof Explorer


Theorem axgroth5

Description: The Tarski-Grothendieck axiom using abbreviations. (Contributed by NM, 22-Jun-2009)

Ref Expression
Assertion axgroth5 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∃ 𝑤𝑦 𝒫 𝑧𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧𝑦𝑧𝑦 ) )

Proof

Step Hyp Ref Expression
1 ax-groth 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( 𝑧𝑦𝑧𝑦 ) ) )
2 biid ( 𝑥𝑦𝑥𝑦 )
3 pwss ( 𝒫 𝑧𝑦 ↔ ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) )
4 pwss ( 𝒫 𝑧𝑤 ↔ ∀ 𝑣 ( 𝑣𝑧𝑣𝑤 ) )
5 4 rexbii ( ∃ 𝑤𝑦 𝒫 𝑧𝑤 ↔ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) )
6 3 5 anbi12i ( ( 𝒫 𝑧𝑦 ∧ ∃ 𝑤𝑦 𝒫 𝑧𝑤 ) ↔ ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) )
7 6 ralbii ( ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∃ 𝑤𝑦 𝒫 𝑧𝑤 ) ↔ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) )
8 df-ral ( ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧𝑦𝑧𝑦 ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝒫 𝑦 → ( 𝑧𝑦𝑧𝑦 ) ) )
9 velpw ( 𝑧 ∈ 𝒫 𝑦𝑧𝑦 )
10 9 imbi1i ( ( 𝑧 ∈ 𝒫 𝑦 → ( 𝑧𝑦𝑧𝑦 ) ) ↔ ( 𝑧𝑦 → ( 𝑧𝑦𝑧𝑦 ) ) )
11 10 albii ( ∀ 𝑧 ( 𝑧 ∈ 𝒫 𝑦 → ( 𝑧𝑦𝑧𝑦 ) ) ↔ ∀ 𝑧 ( 𝑧𝑦 → ( 𝑧𝑦𝑧𝑦 ) ) )
12 8 11 bitri ( ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧𝑦𝑧𝑦 ) ↔ ∀ 𝑧 ( 𝑧𝑦 → ( 𝑧𝑦𝑧𝑦 ) ) )
13 2 7 12 3anbi123i ( ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∃ 𝑤𝑦 𝒫 𝑧𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧𝑦𝑧𝑦 ) ) ↔ ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( 𝑧𝑦𝑧𝑦 ) ) ) )
14 13 exbii ( ∃ 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∃ 𝑤𝑦 𝒫 𝑧𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧𝑦𝑧𝑦 ) ) ↔ ∃ 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( 𝑧𝑦𝑧𝑦 ) ) ) )
15 1 14 mpbir 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∃ 𝑤𝑦 𝒫 𝑧𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧𝑦𝑧𝑦 ) )