Metamath Proof Explorer


Theorem axgroth2

Description: Alternate version of the Tarski-Grothendieck Axiom. (Contributed by NM, 18-Mar-2007)

Ref Expression
Assertion axgroth2 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( 𝑦𝑧𝑧𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 ax-groth 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( 𝑧𝑦𝑧𝑦 ) ) )
2 ssdomg ( 𝑦 ∈ V → ( 𝑧𝑦𝑧𝑦 ) )
3 2 elv ( 𝑧𝑦𝑧𝑦 )
4 3 biantrurd ( 𝑧𝑦 → ( 𝑦𝑧 ↔ ( 𝑧𝑦𝑦𝑧 ) ) )
5 sbthb ( ( 𝑧𝑦𝑦𝑧 ) ↔ 𝑧𝑦 )
6 4 5 bitrdi ( 𝑧𝑦 → ( 𝑦𝑧𝑧𝑦 ) )
7 6 orbi1d ( 𝑧𝑦 → ( ( 𝑦𝑧𝑧𝑦 ) ↔ ( 𝑧𝑦𝑧𝑦 ) ) )
8 7 pm5.74i ( ( 𝑧𝑦 → ( 𝑦𝑧𝑧𝑦 ) ) ↔ ( 𝑧𝑦 → ( 𝑧𝑦𝑧𝑦 ) ) )
9 8 albii ( ∀ 𝑧 ( 𝑧𝑦 → ( 𝑦𝑧𝑧𝑦 ) ) ↔ ∀ 𝑧 ( 𝑧𝑦 → ( 𝑧𝑦𝑧𝑦 ) ) )
10 9 3anbi3i ( ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( 𝑦𝑧𝑧𝑦 ) ) ) ↔ ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( 𝑧𝑦𝑧𝑦 ) ) ) )
11 10 exbii ( ∃ 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( 𝑦𝑧𝑧𝑦 ) ) ) ↔ ∃ 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( 𝑧𝑦𝑧𝑦 ) ) ) )
12 1 11 mpbir 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑦 ) ∧ ∃ 𝑤𝑦𝑣 ( 𝑣𝑧𝑣𝑤 ) ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ( 𝑦𝑧𝑧𝑦 ) ) )