Description: The Tarski-Grothendieck Axiom ax-groth expanded into set theory primitives using 163 symbols (allowing the defined symbols /\ , \/ , <-> , and E. ). An open problem is whether a shorter equivalent exists (when expanded to primitives). (Contributed by NM, 16-Apr-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | grothprim | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axgroth4 | |
|
2 | 3anass | |
|
3 | dfss2 | |
|
4 | elin | |
|
5 | 3 4 | imbi12i | |
6 | 5 | albii | |
7 | 6 | rexbii | |
8 | df-rex | |
|
9 | 7 8 | bitri | |
10 | 9 | ralbii | |
11 | df-ral | |
|
12 | 10 11 | bitri | |
13 | dfss2 | |
|
14 | vex | |
|
15 | 14 | difexi | |
16 | vex | |
|
17 | disjdifr | |
|
18 | 15 16 17 | brdom6disj | |
19 | 18 | orbi1i | |
20 | 19.44v | |
|
21 | 19 20 | bitr4i | |
22 | 13 21 | imbi12i | |
23 | 19.35 | |
|
24 | 22 23 | bitr4i | |
25 | grothprimlem | |
|
26 | 25 | mobii | |
27 | df-mo | |
|
28 | 26 27 | bitri | |
29 | 28 | ralbii | |
30 | df-ral | |
|
31 | 29 30 | bitri | |
32 | df-ral | |
|
33 | eldif | |
|
34 | grothprimlem | |
|
35 | 34 | rexbii | |
36 | df-rex | |
|
37 | 35 36 | bitri | |
38 | 33 37 | imbi12i | |
39 | pm5.6 | |
|
40 | 38 39 | bitri | |
41 | 40 | albii | |
42 | 32 41 | bitri | |
43 | 31 42 | anbi12i | |
44 | 19.26 | |
|
45 | 43 44 | bitr4i | |
46 | 45 | orbi1i | |
47 | 46 | imbi2i | |
48 | 47 | exbii | |
49 | 24 48 | bitri | |
50 | 49 | albii | |
51 | 12 50 | anbi12i | |
52 | 19.26 | |
|
53 | 51 52 | bitr4i | |
54 | 53 | anbi2i | |
55 | 2 54 | bitri | |
56 | 55 | exbii | |
57 | 1 56 | mpbi | |