Metamath Proof Explorer


Axiom ax-groth

Description: The Tarski-Grothendieck Axiom. For every set x there is an inaccessible cardinal y such that y is not in x . The addition of this axiom to ZFC set theory provides a framework for category theory, thus for all practical purposes giving us a complete foundation for "all of mathematics". This version of the axiom is used by the Mizar project ( http://www.mizar.org/JFM/Axiomatics/tarski.html ). Unlike the ZFC axioms, this axiom is very long when expressed in terms of primitive symbols (see grothprim ). An open problem is finding a shorter equivalent. (Contributed by NM, 18-Mar-2007)

Ref Expression
Assertion ax-groth
|- E. y ( x e. y /\ A. z e. y ( A. w ( w C_ z -> w e. y ) /\ E. w e. y A. v ( v C_ z -> v e. w ) ) /\ A. z ( z C_ y -> ( z ~~ y \/ z e. y ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vy
 |-  y
1 vx
 |-  x
2 1 cv
 |-  x
3 0 cv
 |-  y
4 2 3 wcel
 |-  x e. y
5 vz
 |-  z
6 vw
 |-  w
7 6 cv
 |-  w
8 5 cv
 |-  z
9 7 8 wss
 |-  w C_ z
10 7 3 wcel
 |-  w e. y
11 9 10 wi
 |-  ( w C_ z -> w e. y )
12 11 6 wal
 |-  A. w ( w C_ z -> w e. y )
13 vv
 |-  v
14 13 cv
 |-  v
15 14 8 wss
 |-  v C_ z
16 14 7 wcel
 |-  v e. w
17 15 16 wi
 |-  ( v C_ z -> v e. w )
18 17 13 wal
 |-  A. v ( v C_ z -> v e. w )
19 18 6 3 wrex
 |-  E. w e. y A. v ( v C_ z -> v e. w )
20 12 19 wa
 |-  ( A. w ( w C_ z -> w e. y ) /\ E. w e. y A. v ( v C_ z -> v e. w ) )
21 20 5 3 wral
 |-  A. z e. y ( A. w ( w C_ z -> w e. y ) /\ E. w e. y A. v ( v C_ z -> v e. w ) )
22 8 3 wss
 |-  z C_ y
23 cen
 |-  ~~
24 8 3 23 wbr
 |-  z ~~ y
25 8 3 wcel
 |-  z e. y
26 24 25 wo
 |-  ( z ~~ y \/ z e. y )
27 22 26 wi
 |-  ( z C_ y -> ( z ~~ y \/ z e. y ) )
28 27 5 wal
 |-  A. z ( z C_ y -> ( z ~~ y \/ z e. y ) )
29 4 21 28 w3a
 |-  ( x e. y /\ A. z e. y ( A. w ( w C_ z -> w e. y ) /\ E. w e. y A. v ( v C_ z -> v e. w ) ) /\ A. z ( z C_ y -> ( z ~~ y \/ z e. y ) ) )
30 29 0 wex
 |-  E. y ( x e. y /\ A. z e. y ( A. w ( w C_ z -> w e. y ) /\ E. w e. y A. v ( v C_ z -> v e. w ) ) /\ A. z ( z C_ y -> ( z ~~ y \/ z e. y ) ) )