Step |
Hyp |
Ref |
Expression |
1 |
|
inawina |
⊢ ( 𝑥 ∈ Inacc → 𝑥 ∈ Inaccw ) |
2 |
|
winaon |
⊢ ( 𝑥 ∈ Inaccw → 𝑥 ∈ On ) |
3 |
1 2
|
syl |
⊢ ( 𝑥 ∈ Inacc → 𝑥 ∈ On ) |
4 |
3
|
ssriv |
⊢ Inacc ⊆ On |
5 |
|
onmindif |
⊢ ( ( Inacc ⊆ On ∧ 𝐴 ∈ On ) → 𝐴 ∈ ∩ ( Inacc ∖ suc 𝐴 ) ) |
6 |
4 5
|
mpan |
⊢ ( 𝐴 ∈ On → 𝐴 ∈ ∩ ( Inacc ∖ suc 𝐴 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 = ∩ ( Inacc ∖ suc 𝐴 ) ) → 𝐴 ∈ ∩ ( Inacc ∖ suc 𝐴 ) ) |
8 |
|
simpr |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 = ∩ ( Inacc ∖ suc 𝐴 ) ) → 𝑥 = ∩ ( Inacc ∖ suc 𝐴 ) ) |
9 |
7 8
|
eleqtrrd |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 = ∩ ( Inacc ∖ suc 𝐴 ) ) → 𝐴 ∈ 𝑥 ) |
10 |
|
difss |
⊢ ( Inacc ∖ suc 𝐴 ) ⊆ Inacc |
11 |
10 4
|
sstri |
⊢ ( Inacc ∖ suc 𝐴 ) ⊆ On |
12 |
|
inaprc |
⊢ Inacc ∉ V |
13 |
12
|
neli |
⊢ ¬ Inacc ∈ V |
14 |
|
ssdif0 |
⊢ ( Inacc ⊆ suc 𝐴 ↔ ( Inacc ∖ suc 𝐴 ) = ∅ ) |
15 |
|
sucexg |
⊢ ( 𝐴 ∈ On → suc 𝐴 ∈ V ) |
16 |
|
ssexg |
⊢ ( ( Inacc ⊆ suc 𝐴 ∧ suc 𝐴 ∈ V ) → Inacc ∈ V ) |
17 |
16
|
expcom |
⊢ ( suc 𝐴 ∈ V → ( Inacc ⊆ suc 𝐴 → Inacc ∈ V ) ) |
18 |
15 17
|
syl |
⊢ ( 𝐴 ∈ On → ( Inacc ⊆ suc 𝐴 → Inacc ∈ V ) ) |
19 |
14 18
|
syl5bir |
⊢ ( 𝐴 ∈ On → ( ( Inacc ∖ suc 𝐴 ) = ∅ → Inacc ∈ V ) ) |
20 |
13 19
|
mtoi |
⊢ ( 𝐴 ∈ On → ¬ ( Inacc ∖ suc 𝐴 ) = ∅ ) |
21 |
20
|
neqned |
⊢ ( 𝐴 ∈ On → ( Inacc ∖ suc 𝐴 ) ≠ ∅ ) |
22 |
|
onint |
⊢ ( ( ( Inacc ∖ suc 𝐴 ) ⊆ On ∧ ( Inacc ∖ suc 𝐴 ) ≠ ∅ ) → ∩ ( Inacc ∖ suc 𝐴 ) ∈ ( Inacc ∖ suc 𝐴 ) ) |
23 |
11 21 22
|
sylancr |
⊢ ( 𝐴 ∈ On → ∩ ( Inacc ∖ suc 𝐴 ) ∈ ( Inacc ∖ suc 𝐴 ) ) |
24 |
23
|
eldifad |
⊢ ( 𝐴 ∈ On → ∩ ( Inacc ∖ suc 𝐴 ) ∈ Inacc ) |
25 |
9 24
|
rspcime |
⊢ ( 𝐴 ∈ On → ∃ 𝑥 ∈ Inacc 𝐴 ∈ 𝑥 ) |