| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inawina |
⊢ ( 𝑥 ∈ Inacc → 𝑥 ∈ Inaccw ) |
| 2 |
|
winaon |
⊢ ( 𝑥 ∈ Inaccw → 𝑥 ∈ On ) |
| 3 |
1 2
|
syl |
⊢ ( 𝑥 ∈ Inacc → 𝑥 ∈ On ) |
| 4 |
3
|
ssriv |
⊢ Inacc ⊆ On |
| 5 |
|
onmindif |
⊢ ( ( Inacc ⊆ On ∧ 𝐴 ∈ On ) → 𝐴 ∈ ∩ ( Inacc ∖ suc 𝐴 ) ) |
| 6 |
4 5
|
mpan |
⊢ ( 𝐴 ∈ On → 𝐴 ∈ ∩ ( Inacc ∖ suc 𝐴 ) ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 = ∩ ( Inacc ∖ suc 𝐴 ) ) → 𝐴 ∈ ∩ ( Inacc ∖ suc 𝐴 ) ) |
| 8 |
|
simpr |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 = ∩ ( Inacc ∖ suc 𝐴 ) ) → 𝑥 = ∩ ( Inacc ∖ suc 𝐴 ) ) |
| 9 |
7 8
|
eleqtrrd |
⊢ ( ( 𝐴 ∈ On ∧ 𝑥 = ∩ ( Inacc ∖ suc 𝐴 ) ) → 𝐴 ∈ 𝑥 ) |
| 10 |
|
difss |
⊢ ( Inacc ∖ suc 𝐴 ) ⊆ Inacc |
| 11 |
10 4
|
sstri |
⊢ ( Inacc ∖ suc 𝐴 ) ⊆ On |
| 12 |
|
inaprc |
⊢ Inacc ∉ V |
| 13 |
12
|
neli |
⊢ ¬ Inacc ∈ V |
| 14 |
|
ssdif0 |
⊢ ( Inacc ⊆ suc 𝐴 ↔ ( Inacc ∖ suc 𝐴 ) = ∅ ) |
| 15 |
|
sucexg |
⊢ ( 𝐴 ∈ On → suc 𝐴 ∈ V ) |
| 16 |
|
ssexg |
⊢ ( ( Inacc ⊆ suc 𝐴 ∧ suc 𝐴 ∈ V ) → Inacc ∈ V ) |
| 17 |
16
|
expcom |
⊢ ( suc 𝐴 ∈ V → ( Inacc ⊆ suc 𝐴 → Inacc ∈ V ) ) |
| 18 |
15 17
|
syl |
⊢ ( 𝐴 ∈ On → ( Inacc ⊆ suc 𝐴 → Inacc ∈ V ) ) |
| 19 |
14 18
|
biimtrrid |
⊢ ( 𝐴 ∈ On → ( ( Inacc ∖ suc 𝐴 ) = ∅ → Inacc ∈ V ) ) |
| 20 |
13 19
|
mtoi |
⊢ ( 𝐴 ∈ On → ¬ ( Inacc ∖ suc 𝐴 ) = ∅ ) |
| 21 |
20
|
neqned |
⊢ ( 𝐴 ∈ On → ( Inacc ∖ suc 𝐴 ) ≠ ∅ ) |
| 22 |
|
onint |
⊢ ( ( ( Inacc ∖ suc 𝐴 ) ⊆ On ∧ ( Inacc ∖ suc 𝐴 ) ≠ ∅ ) → ∩ ( Inacc ∖ suc 𝐴 ) ∈ ( Inacc ∖ suc 𝐴 ) ) |
| 23 |
11 21 22
|
sylancr |
⊢ ( 𝐴 ∈ On → ∩ ( Inacc ∖ suc 𝐴 ) ∈ ( Inacc ∖ suc 𝐴 ) ) |
| 24 |
23
|
eldifad |
⊢ ( 𝐴 ∈ On → ∩ ( Inacc ∖ suc 𝐴 ) ∈ Inacc ) |
| 25 |
9 24
|
rspcime |
⊢ ( 𝐴 ∈ On → ∃ 𝑥 ∈ Inacc 𝐴 ∈ 𝑥 ) |