| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inawina |
|- ( x e. Inacc -> x e. InaccW ) |
| 2 |
|
winaon |
|- ( x e. InaccW -> x e. On ) |
| 3 |
1 2
|
syl |
|- ( x e. Inacc -> x e. On ) |
| 4 |
3
|
ssriv |
|- Inacc C_ On |
| 5 |
|
onmindif |
|- ( ( Inacc C_ On /\ A e. On ) -> A e. |^| ( Inacc \ suc A ) ) |
| 6 |
4 5
|
mpan |
|- ( A e. On -> A e. |^| ( Inacc \ suc A ) ) |
| 7 |
6
|
adantr |
|- ( ( A e. On /\ x = |^| ( Inacc \ suc A ) ) -> A e. |^| ( Inacc \ suc A ) ) |
| 8 |
|
simpr |
|- ( ( A e. On /\ x = |^| ( Inacc \ suc A ) ) -> x = |^| ( Inacc \ suc A ) ) |
| 9 |
7 8
|
eleqtrrd |
|- ( ( A e. On /\ x = |^| ( Inacc \ suc A ) ) -> A e. x ) |
| 10 |
|
difss |
|- ( Inacc \ suc A ) C_ Inacc |
| 11 |
10 4
|
sstri |
|- ( Inacc \ suc A ) C_ On |
| 12 |
|
inaprc |
|- Inacc e/ _V |
| 13 |
12
|
neli |
|- -. Inacc e. _V |
| 14 |
|
ssdif0 |
|- ( Inacc C_ suc A <-> ( Inacc \ suc A ) = (/) ) |
| 15 |
|
sucexg |
|- ( A e. On -> suc A e. _V ) |
| 16 |
|
ssexg |
|- ( ( Inacc C_ suc A /\ suc A e. _V ) -> Inacc e. _V ) |
| 17 |
16
|
expcom |
|- ( suc A e. _V -> ( Inacc C_ suc A -> Inacc e. _V ) ) |
| 18 |
15 17
|
syl |
|- ( A e. On -> ( Inacc C_ suc A -> Inacc e. _V ) ) |
| 19 |
14 18
|
biimtrrid |
|- ( A e. On -> ( ( Inacc \ suc A ) = (/) -> Inacc e. _V ) ) |
| 20 |
13 19
|
mtoi |
|- ( A e. On -> -. ( Inacc \ suc A ) = (/) ) |
| 21 |
20
|
neqned |
|- ( A e. On -> ( Inacc \ suc A ) =/= (/) ) |
| 22 |
|
onint |
|- ( ( ( Inacc \ suc A ) C_ On /\ ( Inacc \ suc A ) =/= (/) ) -> |^| ( Inacc \ suc A ) e. ( Inacc \ suc A ) ) |
| 23 |
11 21 22
|
sylancr |
|- ( A e. On -> |^| ( Inacc \ suc A ) e. ( Inacc \ suc A ) ) |
| 24 |
23
|
eldifad |
|- ( A e. On -> |^| ( Inacc \ suc A ) e. Inacc ) |
| 25 |
9 24
|
rspcime |
|- ( A e. On -> E. x e. Inacc A e. x ) |