Description: Assuming the Tarski-Grothendieck axiom, every ordinal is contained in an inaccessible ordinal. (Contributed by Rohan Ridenour, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | inaex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inawina | |
|
2 | winaon | |
|
3 | 1 2 | syl | |
4 | 3 | ssriv | |
5 | onmindif | |
|
6 | 4 5 | mpan | |
7 | 6 | adantr | |
8 | simpr | |
|
9 | 7 8 | eleqtrrd | |
10 | difss | |
|
11 | 10 4 | sstri | |
12 | inaprc | |
|
13 | 12 | neli | |
14 | ssdif0 | |
|
15 | sucexg | |
|
16 | ssexg | |
|
17 | 16 | expcom | |
18 | 15 17 | syl | |
19 | 14 18 | biimtrrid | |
20 | 13 19 | mtoi | |
21 | 20 | neqned | |
22 | onint | |
|
23 | 11 21 22 | sylancr | |
24 | 23 | eldifad | |
25 | 9 24 | rspcime | |