Description: When its successor is subtracted from a class of ordinal numbers, an ordinal number is less than the minimum of the resulting subclass. (Contributed by NM, 1-Dec-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | onmindif | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif | |
|
2 | ssel2 | |
|
3 | ontri1 | |
|
4 | onsssuc | |
|
5 | 3 4 | bitr3d | |
6 | 5 | con1bid | |
7 | 2 6 | sylan | |
8 | 7 | biimpd | |
9 | 8 | exp31 | |
10 | 9 | com23 | |
11 | 10 | imp4b | |
12 | 1 11 | biimtrid | |
13 | 12 | ralrimiv | |
14 | elintg | |
|
15 | 14 | adantl | |
16 | 13 15 | mpbird | |