Metamath Proof Explorer


Theorem onmindif

Description: When its successor is subtracted from a class of ordinal numbers, an ordinal number is less than the minimum of the resulting subclass. (Contributed by NM, 1-Dec-2003)

Ref Expression
Assertion onmindif AOnBOnBAsucB

Proof

Step Hyp Ref Expression
1 eldif xAsucBxA¬xsucB
2 ssel2 AOnxAxOn
3 ontri1 xOnBOnxB¬Bx
4 onsssuc xOnBOnxBxsucB
5 3 4 bitr3d xOnBOn¬BxxsucB
6 5 con1bid xOnBOn¬xsucBBx
7 2 6 sylan AOnxABOn¬xsucBBx
8 7 biimpd AOnxABOn¬xsucBBx
9 8 exp31 AOnxABOn¬xsucBBx
10 9 com23 AOnBOnxA¬xsucBBx
11 10 imp4b AOnBOnxA¬xsucBBx
12 1 11 biimtrid AOnBOnxAsucBBx
13 12 ralrimiv AOnBOnxAsucBBx
14 elintg BOnBAsucBxAsucBBx
15 14 adantl AOnBOnBAsucBxAsucBBx
16 13 15 mpbird AOnBOnBAsucB