Metamath Proof Explorer


Theorem inagrud

Description: Inaccessible levels of the cumulative hierarchy are Grothendieck universes. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypothesis inagrud.1 ( 𝜑𝐼 ∈ Inacc )
Assertion inagrud ( 𝜑 → ( 𝑅1𝐼 ) ∈ Univ )

Proof

Step Hyp Ref Expression
1 inagrud.1 ( 𝜑𝐼 ∈ Inacc )
2 inatsk ( 𝐼 ∈ Inacc → ( 𝑅1𝐼 ) ∈ Tarski )
3 1 2 syl ( 𝜑 → ( 𝑅1𝐼 ) ∈ Tarski )
4 r1tr Tr ( 𝑅1𝐼 )
5 grutsk1 ( ( ( 𝑅1𝐼 ) ∈ Tarski ∧ Tr ( 𝑅1𝐼 ) ) → ( 𝑅1𝐼 ) ∈ Univ )
6 3 4 5 sylancl ( 𝜑 → ( 𝑅1𝐼 ) ∈ Univ )