Metamath Proof Explorer


Theorem inagrud

Description: Inaccessible levels of the cumulative hierarchy are Grothendieck universes. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypothesis inagrud.1
|- ( ph -> I e. Inacc )
Assertion inagrud
|- ( ph -> ( R1 ` I ) e. Univ )

Proof

Step Hyp Ref Expression
1 inagrud.1
 |-  ( ph -> I e. Inacc )
2 inatsk
 |-  ( I e. Inacc -> ( R1 ` I ) e. Tarski )
3 1 2 syl
 |-  ( ph -> ( R1 ` I ) e. Tarski )
4 r1tr
 |-  Tr ( R1 ` I )
5 grutsk1
 |-  ( ( ( R1 ` I ) e. Tarski /\ Tr ( R1 ` I ) ) -> ( R1 ` I ) e. Univ )
6 3 4 5 sylancl
 |-  ( ph -> ( R1 ` I ) e. Univ )