Metamath Proof Explorer


Theorem dfuniv2

Description: Alternative definition of Univ using only simple defined symbols. (Contributed by Rohan Ridenour, 10-Oct-2024)

Ref Expression
Assertion dfuniv2 Univ=y|zyf𝒫ywy𝒫zywzff𝒫𝒫w

Proof

Step Hyp Ref Expression
1 grumnueq Univ=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
2 1 ismnu yVyUnivzy𝒫zyfwy𝒫zwizvyivvfufiuuw
3 2 elv yUnivzy𝒫zyfwy𝒫zwizvyivvfufiuuw
4 ismnushort f𝒫ywy𝒫zywzff𝒫𝒫w𝒫zyfwy𝒫zwizvyivvfufiuuw
5 4 ralbii zyf𝒫ywy𝒫zywzff𝒫𝒫wzy𝒫zyfwy𝒫zwizvyivvfufiuuw
6 3 5 bitr4i yUnivzyf𝒫ywy𝒫zywzff𝒫𝒫w
7 6 eqabi Univ=y|zyf𝒫ywy𝒫zywzff𝒫𝒫w