Metamath Proof Explorer


Theorem dfuniv2

Description: Alternative definition of Univ using only simple defined symbols. (Contributed by Rohan Ridenour, 10-Oct-2024)

Ref Expression
Assertion dfuniv2 Univ = { 𝑦 ∣ ∀ 𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦𝑤 ) ∧ ( 𝑧 𝑓 ) ⊆ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) }

Proof

Step Hyp Ref Expression
1 grumnueq Univ = { 𝑘 ∣ ∀ 𝑙𝑘 ( 𝒫 𝑙𝑘 ∧ ∀ 𝑚𝑛𝑘 ( 𝒫 𝑙𝑛 ∧ ∀ 𝑝𝑙 ( ∃ 𝑞𝑘 ( 𝑝𝑞𝑞𝑚 ) → ∃ 𝑟𝑚 ( 𝑝𝑟 𝑟𝑛 ) ) ) ) }
2 1 ismnu ( 𝑦 ∈ V → ( 𝑦 ∈ Univ ↔ ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∀ 𝑓𝑤𝑦 ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝑦 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) ) )
3 2 elv ( 𝑦 ∈ Univ ↔ ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∀ 𝑓𝑤𝑦 ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝑦 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) )
4 ismnushort ( ∀ 𝑓 ∈ 𝒫 𝑦𝑤𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦𝑤 ) ∧ ( 𝑧 𝑓 ) ⊆ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) ↔ ( 𝒫 𝑧𝑦 ∧ ∀ 𝑓𝑤𝑦 ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝑦 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) )
5 4 ralbii ( ∀ 𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦𝑤 ) ∧ ( 𝑧 𝑓 ) ⊆ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) ↔ ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∀ 𝑓𝑤𝑦 ( 𝒫 𝑧𝑤 ∧ ∀ 𝑖𝑧 ( ∃ 𝑣𝑦 ( 𝑖𝑣𝑣𝑓 ) → ∃ 𝑢𝑓 ( 𝑖𝑢 𝑢𝑤 ) ) ) ) )
6 3 5 bitr4i ( 𝑦 ∈ Univ ↔ ∀ 𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦𝑤 ) ∧ ( 𝑧 𝑓 ) ⊆ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) )
7 6 abbi2i Univ = { 𝑦 ∣ ∀ 𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦𝑤 ) ∧ ( 𝑧 𝑓 ) ⊆ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) }