Step |
Hyp |
Ref |
Expression |
1 |
|
grumnueq |
⊢ Univ = { 𝑘 ∣ ∀ 𝑙 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑘 ∧ ∀ 𝑚 ∃ 𝑛 ∈ 𝑘 ( 𝒫 𝑙 ⊆ 𝑛 ∧ ∀ 𝑝 ∈ 𝑙 ( ∃ 𝑞 ∈ 𝑘 ( 𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚 ) → ∃ 𝑟 ∈ 𝑚 ( 𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛 ) ) ) ) } |
2 |
1
|
ismnu |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ Univ ↔ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∀ 𝑓 ∃ 𝑤 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝑦 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ) ) |
3 |
2
|
elv |
⊢ ( 𝑦 ∈ Univ ↔ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∀ 𝑓 ∃ 𝑤 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝑦 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ) |
4 |
|
ismnushort |
⊢ ( ∀ 𝑓 ∈ 𝒫 𝑦 ∃ 𝑤 ∈ 𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦 ∩ 𝑤 ) ∧ ( 𝑧 ∩ ∪ 𝑓 ) ⊆ ∪ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) ↔ ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∀ 𝑓 ∃ 𝑤 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝑦 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ) |
5 |
4
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑓 ∈ 𝒫 𝑦 ∃ 𝑤 ∈ 𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦 ∩ 𝑤 ) ∧ ( 𝑧 ∩ ∪ 𝑓 ) ⊆ ∪ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) ↔ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∀ 𝑓 ∃ 𝑤 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑤 ∧ ∀ 𝑖 ∈ 𝑧 ( ∃ 𝑣 ∈ 𝑦 ( 𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓 ) → ∃ 𝑢 ∈ 𝑓 ( 𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤 ) ) ) ) ) |
6 |
3 5
|
bitr4i |
⊢ ( 𝑦 ∈ Univ ↔ ∀ 𝑧 ∈ 𝑦 ∀ 𝑓 ∈ 𝒫 𝑦 ∃ 𝑤 ∈ 𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦 ∩ 𝑤 ) ∧ ( 𝑧 ∩ ∪ 𝑓 ) ⊆ ∪ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) ) |
7 |
6
|
abbi2i |
⊢ Univ = { 𝑦 ∣ ∀ 𝑧 ∈ 𝑦 ∀ 𝑓 ∈ 𝒫 𝑦 ∃ 𝑤 ∈ 𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦 ∩ 𝑤 ) ∧ ( 𝑧 ∩ ∪ 𝑓 ) ⊆ ∪ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) } |