Metamath Proof Explorer


Theorem rr-grothshortbi

Description: Express "every set is contained in a Grothendieck universe" in a short form while avoiding complicated definitions. (Contributed by Rohan Ridenour, 8-Oct-2024)

Ref Expression
Assertion rr-grothshortbi ( ∀ 𝑥𝑦 ∈ Univ 𝑥𝑦 ↔ ∀ 𝑥𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦𝑤 ) ∧ ( 𝑧 𝑓 ) ⊆ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) ) )

Proof

Step Hyp Ref Expression
1 df-rex ( ∃ 𝑦 ∈ Univ 𝑥𝑦 ↔ ∃ 𝑦 ( 𝑦 ∈ Univ ∧ 𝑥𝑦 ) )
2 exancom ( ∃ 𝑦 ( 𝑦 ∈ Univ ∧ 𝑥𝑦 ) ↔ ∃ 𝑦 ( 𝑥𝑦𝑦 ∈ Univ ) )
3 dfuniv2 Univ = { 𝑦 ∣ ∀ 𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦𝑤 ) ∧ ( 𝑧 𝑓 ) ⊆ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) }
4 3 abeq2i ( 𝑦 ∈ Univ ↔ ∀ 𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦𝑤 ) ∧ ( 𝑧 𝑓 ) ⊆ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) )
5 4 anbi2i ( ( 𝑥𝑦𝑦 ∈ Univ ) ↔ ( 𝑥𝑦 ∧ ∀ 𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦𝑤 ) ∧ ( 𝑧 𝑓 ) ⊆ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) ) )
6 5 exbii ( ∃ 𝑦 ( 𝑥𝑦𝑦 ∈ Univ ) ↔ ∃ 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦𝑤 ) ∧ ( 𝑧 𝑓 ) ⊆ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) ) )
7 1 2 6 3bitri ( ∃ 𝑦 ∈ Univ 𝑥𝑦 ↔ ∃ 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦𝑤 ) ∧ ( 𝑧 𝑓 ) ⊆ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) ) )
8 7 albii ( ∀ 𝑥𝑦 ∈ Univ 𝑥𝑦 ↔ ∀ 𝑥𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦𝑤 ) ∧ ( 𝑧 𝑓 ) ⊆ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) ) )