Description: A shorter equivalent of ax-groth than rr-groth using a few more simple defined symbols. (Contributed by Rohan Ridenour, 8-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | rr-grothshort | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ∀ 𝑓 ∈ 𝒫 𝑦 ∃ 𝑤 ∈ 𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦 ∩ 𝑤 ) ∧ ( 𝑧 ∩ ∪ 𝑓 ) ⊆ ∪ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gruex | ⊢ ∃ 𝑦 ∈ Univ 𝑥 ∈ 𝑦 | |
2 | 1 | ax-gen | ⊢ ∀ 𝑥 ∃ 𝑦 ∈ Univ 𝑥 ∈ 𝑦 |
3 | rr-grothshortbi | ⊢ ( ∀ 𝑥 ∃ 𝑦 ∈ Univ 𝑥 ∈ 𝑦 ↔ ∀ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ∀ 𝑓 ∈ 𝒫 𝑦 ∃ 𝑤 ∈ 𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦 ∩ 𝑤 ) ∧ ( 𝑧 ∩ ∪ 𝑓 ) ⊆ ∪ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) ) ) | |
4 | 2 3 | mpbi | ⊢ ∀ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ∀ 𝑓 ∈ 𝒫 𝑦 ∃ 𝑤 ∈ 𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦 ∩ 𝑤 ) ∧ ( 𝑧 ∩ ∪ 𝑓 ) ⊆ ∪ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) ) |
5 | 4 | spi | ⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ∀ 𝑓 ∈ 𝒫 𝑦 ∃ 𝑤 ∈ 𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦 ∩ 𝑤 ) ∧ ( 𝑧 ∩ ∪ 𝑓 ) ⊆ ∪ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) ) |