Metamath Proof Explorer


Theorem rr-grothshort

Description: A shorter equivalent of ax-groth than rr-groth using a few more simple defined symbols. (Contributed by Rohan Ridenour, 8-Oct-2024)

Ref Expression
Assertion rr-grothshort 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦𝑤 ) ∧ ( 𝑧 𝑓 ) ⊆ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) )

Proof

Step Hyp Ref Expression
1 gruex 𝑦 ∈ Univ 𝑥𝑦
2 1 ax-gen 𝑥𝑦 ∈ Univ 𝑥𝑦
3 rr-grothshortbi ( ∀ 𝑥𝑦 ∈ Univ 𝑥𝑦 ↔ ∀ 𝑥𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦𝑤 ) ∧ ( 𝑧 𝑓 ) ⊆ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) ) )
4 2 3 mpbi 𝑥𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦𝑤 ) ∧ ( 𝑧 𝑓 ) ⊆ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) )
5 4 spi 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦𝑓 ∈ 𝒫 𝑦𝑤𝑦 ( 𝒫 𝑧 ⊆ ( 𝑦𝑤 ) ∧ ( 𝑧 𝑓 ) ⊆ ( 𝑓 ∩ 𝒫 𝒫 𝑤 ) ) )