Metamath Proof Explorer


Theorem dfuniv2

Description: Alternative definition of Univ using only simple defined symbols. (Contributed by Rohan Ridenour, 10-Oct-2024)

Ref Expression
Assertion dfuniv2
|- Univ = { y | A. z e. y A. f e. ~P y E. w e. y ( ~P z C_ ( y i^i w ) /\ ( z i^i U. f ) C_ U. ( f i^i ~P ~P w ) ) }

Proof

Step Hyp Ref Expression
1 grumnueq
 |-  Univ = { k | A. l e. k ( ~P l C_ k /\ A. m E. n e. k ( ~P l C_ n /\ A. p e. l ( E. q e. k ( p e. q /\ q e. m ) -> E. r e. m ( p e. r /\ U. r C_ n ) ) ) ) }
2 1 ismnu
 |-  ( y e. _V -> ( y e. Univ <-> A. z e. y ( ~P z C_ y /\ A. f E. w e. y ( ~P z C_ w /\ A. i e. z ( E. v e. y ( i e. v /\ v e. f ) -> E. u e. f ( i e. u /\ U. u C_ w ) ) ) ) ) )
3 2 elv
 |-  ( y e. Univ <-> A. z e. y ( ~P z C_ y /\ A. f E. w e. y ( ~P z C_ w /\ A. i e. z ( E. v e. y ( i e. v /\ v e. f ) -> E. u e. f ( i e. u /\ U. u C_ w ) ) ) ) )
4 ismnushort
 |-  ( A. f e. ~P y E. w e. y ( ~P z C_ ( y i^i w ) /\ ( z i^i U. f ) C_ U. ( f i^i ~P ~P w ) ) <-> ( ~P z C_ y /\ A. f E. w e. y ( ~P z C_ w /\ A. i e. z ( E. v e. y ( i e. v /\ v e. f ) -> E. u e. f ( i e. u /\ U. u C_ w ) ) ) ) )
5 4 ralbii
 |-  ( A. z e. y A. f e. ~P y E. w e. y ( ~P z C_ ( y i^i w ) /\ ( z i^i U. f ) C_ U. ( f i^i ~P ~P w ) ) <-> A. z e. y ( ~P z C_ y /\ A. f E. w e. y ( ~P z C_ w /\ A. i e. z ( E. v e. y ( i e. v /\ v e. f ) -> E. u e. f ( i e. u /\ U. u C_ w ) ) ) ) )
6 3 5 bitr4i
 |-  ( y e. Univ <-> A. z e. y A. f e. ~P y E. w e. y ( ~P z C_ ( y i^i w ) /\ ( z i^i U. f ) C_ U. ( f i^i ~P ~P w ) ) )
7 6 abbi2i
 |-  Univ = { y | A. z e. y A. f e. ~P y E. w e. y ( ~P z C_ ( y i^i w ) /\ ( z i^i U. f ) C_ U. ( f i^i ~P ~P w ) ) }