Metamath Proof Explorer


Theorem ismnushort

Description: Express the predicate on U and z in ismnu in a shorter form while avoiding complicated definitions. (Contributed by Rohan Ridenour, 10-Oct-2024)

Ref Expression
Assertion ismnushort f𝒫UwU𝒫zUwzff𝒫𝒫w𝒫zUfwU𝒫zwizvUivvfufiuuw

Proof

Step Hyp Ref Expression
1 simpl 𝒫zUwzff𝒫𝒫w𝒫zUw
2 1 reximi wU𝒫zUwzff𝒫𝒫wwU𝒫zUw
3 2 ralimi f𝒫UwU𝒫zUwzff𝒫𝒫wf𝒫UwU𝒫zUw
4 0elpw 𝒫U
5 4 a1i 𝒫U
6 biidd f=wU𝒫zUwwU𝒫zUw
7 5 6 rspcdv f𝒫UwU𝒫zUwwU𝒫zUw
8 7 mptru f𝒫UwU𝒫zUwwU𝒫zUw
9 inss1 UwU
10 sstr2 𝒫zUwUwU𝒫zU
11 9 10 mpi 𝒫zUw𝒫zU
12 11 reximi wU𝒫zUwwU𝒫zU
13 8 12 syl f𝒫UwU𝒫zUwwU𝒫zU
14 rexex wU𝒫zUw𝒫zU
15 ax5e w𝒫zU𝒫zU
16 14 15 syl wU𝒫zU𝒫zU
17 3 13 16 3syl f𝒫UwU𝒫zUwzff𝒫𝒫w𝒫zU
18 inss1 UgU
19 vex gV
20 19 inex2 UgV
21 20 elpw Ug𝒫UUgU
22 18 21 mpbir Ug𝒫U
23 unieq f=Ugf=Ug
24 23 ineq2d f=Ugzf=zUg
25 ineq1 f=Ugf𝒫𝒫w=Ug𝒫𝒫w
26 25 unieqd f=Ugf𝒫𝒫w=Ug𝒫𝒫w
27 24 26 sseq12d f=Ugzff𝒫𝒫wzUgUg𝒫𝒫w
28 27 anbi2d f=Ug𝒫zUwzff𝒫𝒫w𝒫zUwzUgUg𝒫𝒫w
29 28 rexbidv f=UgwU𝒫zUwzff𝒫𝒫wwU𝒫zUwzUgUg𝒫𝒫w
30 29 rspcv Ug𝒫Uf𝒫UwU𝒫zUwzff𝒫𝒫wwU𝒫zUwzUgUg𝒫𝒫w
31 22 30 ax-mp f𝒫UwU𝒫zUwzff𝒫𝒫wwU𝒫zUwzUgUg𝒫𝒫w
32 31 alrimiv f𝒫UwU𝒫zUwzff𝒫𝒫wgwU𝒫zUwzUgUg𝒫𝒫w
33 inss2 Uww
34 sstr2 𝒫zUwUww𝒫zw
35 33 34 mpi 𝒫zUw𝒫zw
36 an12 vUivvgivvUvg
37 elin vUgvUvg
38 37 bicomi vUvgvUg
39 38 anbi2i ivvUvgivvUg
40 36 39 bitri vUivvgivvUg
41 40 exbii vvUivvgvivvUg
42 df-rex vUivvgvvUivvg
43 eluni iUgvivvUg
44 41 42 43 3bitr4i vUivvgiUg
45 simp1 zUgUg𝒫𝒫wiziUgzUgUg𝒫𝒫w
46 elin izUgiziUg
47 46 biimpri iziUgizUg
48 47 3adant1 zUgUg𝒫𝒫wiziUgizUg
49 45 48 sseldd zUgUg𝒫𝒫wiziUgiUg𝒫𝒫w
50 eluni iUg𝒫𝒫wuiuuUg𝒫𝒫w
51 49 50 sylib zUgUg𝒫𝒫wiziUguiuuUg𝒫𝒫w
52 elinel1 uUg𝒫𝒫wuUg
53 52 elin2d uUg𝒫𝒫wug
54 elinel2 uUg𝒫𝒫wu𝒫𝒫w
55 elpwpw u𝒫𝒫wuVuw
56 55 simprbi u𝒫𝒫wuw
57 54 56 syl uUg𝒫𝒫wuw
58 53 57 jca uUg𝒫𝒫wuguw
59 58 anim2i iuuUg𝒫𝒫wiuuguw
60 an12 iuuguwugiuuw
61 59 60 sylib iuuUg𝒫𝒫wugiuuw
62 61 eximi uiuuUg𝒫𝒫wuugiuuw
63 df-rex ugiuuwuugiuuw
64 62 63 sylibr uiuuUg𝒫𝒫wugiuuw
65 51 64 syl zUgUg𝒫𝒫wiziUgugiuuw
66 65 3expia zUgUg𝒫𝒫wiziUgugiuuw
67 44 66 biimtrid zUgUg𝒫𝒫wizvUivvgugiuuw
68 67 ralrimiva zUgUg𝒫𝒫wizvUivvgugiuuw
69 35 68 anim12i 𝒫zUwzUgUg𝒫𝒫w𝒫zwizvUivvgugiuuw
70 69 reximi wU𝒫zUwzUgUg𝒫𝒫wwU𝒫zwizvUivvgugiuuw
71 32 70 sylg f𝒫UwU𝒫zUwzff𝒫𝒫wgwU𝒫zwizvUivvgugiuuw
72 elequ2 f=gvfvg
73 72 anbi2d f=givvfivvg
74 73 rexbidv f=gvUivvfvUivvg
75 rexeq f=gufiuuwugiuuw
76 74 75 imbi12d f=gvUivvfufiuuwvUivvgugiuuw
77 76 ralbidv f=gizvUivvfufiuuwizvUivvgugiuuw
78 77 anbi2d f=g𝒫zwizvUivvfufiuuw𝒫zwizvUivvgugiuuw
79 78 rexbidv f=gwU𝒫zwizvUivvfufiuuwwU𝒫zwizvUivvgugiuuw
80 79 cbvalvw fwU𝒫zwizvUivvfufiuuwgwU𝒫zwizvUivvgugiuuw
81 71 80 sylibr f𝒫UwU𝒫zUwzff𝒫𝒫wfwU𝒫zwizvUivvfufiuuw
82 17 81 jca f𝒫UwU𝒫zUwzff𝒫𝒫w𝒫zUfwU𝒫zwizvUivvfufiuuw
83 nfv f𝒫zU
84 nfa1 ffwU𝒫zwizvUivvfufiuuw
85 83 84 nfan f𝒫zUfwU𝒫zwizvUivvfufiuuw
86 elpwi f𝒫UfU
87 sp fwU𝒫zwizvUivvfufiuuwwU𝒫zwizvUivvfufiuuw
88 ssin 𝒫zU𝒫zw𝒫zUw
89 88 biimpi 𝒫zU𝒫zw𝒫zUw
90 89 ex 𝒫zU𝒫zw𝒫zUw
91 90 adantr 𝒫zUfU𝒫zw𝒫zUw
92 simp3 𝒫zUfUifif
93 eluni ifvivvf
94 92 93 sylib 𝒫zUfUifvivvf
95 simpl2 𝒫zUfUifivvffU
96 simprr 𝒫zUfUifivvfvf
97 95 96 sseldd 𝒫zUfUifivvfvU
98 simprl 𝒫zUfUifivvfiv
99 97 98 96 3jca 𝒫zUfUifivvfvUivvf
100 99 ex 𝒫zUfUifivvfvUivvf
101 100 eximdv 𝒫zUfUifvivvfvvUivvf
102 94 101 mpd 𝒫zUfUifvvUivvf
103 df-rex vUivvfvvUivvf
104 3anass vUivvfvUivvf
105 104 exbii vvUivvfvvUivvf
106 103 105 bitr4i vUivvfvvUivvf
107 102 106 sylibr 𝒫zUfUifvUivvf
108 107 3expia 𝒫zUfUifvUivvf
109 elin uf𝒫𝒫wufu𝒫𝒫w
110 vex uV
111 110 55 mpbiran u𝒫𝒫wuw
112 111 anbi2i ufu𝒫𝒫wufuw
113 109 112 bitri uf𝒫𝒫wufuw
114 113 anbi2i iuuf𝒫𝒫wiuufuw
115 an12 ufiuuwiuufuw
116 114 115 bitr4i iuuf𝒫𝒫wufiuuw
117 116 exbii uiuuf𝒫𝒫wuufiuuw
118 eluni if𝒫𝒫wuiuuf𝒫𝒫w
119 df-rex ufiuuwuufiuuw
120 117 118 119 3bitr4i if𝒫𝒫wufiuuw
121 120 biimpri ufiuuwif𝒫𝒫w
122 121 a1i 𝒫zUfUufiuuwif𝒫𝒫w
123 108 122 imim12d 𝒫zUfUvUivvfufiuuwifif𝒫𝒫w
124 123 ralimdv 𝒫zUfUizvUivvfufiuuwizifif𝒫𝒫w
125 elin izfizif
126 125 imbi1i izfif𝒫𝒫wizifif𝒫𝒫w
127 impexp izifif𝒫𝒫wizifif𝒫𝒫w
128 126 127 bitri izfif𝒫𝒫wizifif𝒫𝒫w
129 128 albii iizfif𝒫𝒫wiizifif𝒫𝒫w
130 dfss2 zff𝒫𝒫wiizfif𝒫𝒫w
131 df-ral izifif𝒫𝒫wiizifif𝒫𝒫w
132 129 130 131 3bitr4i zff𝒫𝒫wizifif𝒫𝒫w
133 124 132 syl6ibr 𝒫zUfUizvUivvfufiuuwzff𝒫𝒫w
134 91 133 anim12d 𝒫zUfU𝒫zwizvUivvfufiuuw𝒫zUwzff𝒫𝒫w
135 134 reximdv 𝒫zUfUwU𝒫zwizvUivvfufiuuwwU𝒫zUwzff𝒫𝒫w
136 135 3impia 𝒫zUfUwU𝒫zwizvUivvfufiuuwwU𝒫zUwzff𝒫𝒫w
137 136 3com23 𝒫zUwU𝒫zwizvUivvfufiuuwfUwU𝒫zUwzff𝒫𝒫w
138 87 137 syl3an2 𝒫zUfwU𝒫zwizvUivvfufiuuwfUwU𝒫zUwzff𝒫𝒫w
139 138 3expa 𝒫zUfwU𝒫zwizvUivvfufiuuwfUwU𝒫zUwzff𝒫𝒫w
140 86 139 sylan2 𝒫zUfwU𝒫zwizvUivvfufiuuwf𝒫UwU𝒫zUwzff𝒫𝒫w
141 85 140 ralrimia 𝒫zUfwU𝒫zwizvUivvfufiuuwf𝒫UwU𝒫zUwzff𝒫𝒫w
142 82 141 impbii f𝒫UwU𝒫zUwzff𝒫𝒫w𝒫zUfwU𝒫zwizvUivvfufiuuw