Metamath Proof Explorer


Theorem mnuprdlem3

Description: Lemma for mnuprd . (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypotheses mnuprdlem3.1 F=AB
mnuprdlem3.9 iφ
Assertion mnuprdlem3 φivFiv

Proof

Step Hyp Ref Expression
1 mnuprdlem3.1 F=AB
2 mnuprdlem3.9 iφ
3 elpri ii=i=
4 0ex V
5 4 prid1 A
6 5 a1i φi=a=AA
7 simplr φi=a=Ai=
8 simpr φi=a=Aa=A
9 6 7 8 3eltr4d φi=a=Aia
10 prex AV
11 10 prid1 AAB
12 11 1 eleqtrri AF
13 12 a1i φi=AF
14 9 13 rspcime φi=aFia
15 p0ex V
16 15 prid1 B
17 16 a1i φi=a=BB
18 simplr φi=a=Bi=
19 simpr φi=a=Ba=B
20 17 18 19 3eltr4d φi=a=Bia
21 prex BV
22 21 prid2 BAB
23 22 1 eleqtrri BF
24 23 a1i φi=BF
25 20 24 rspcime φi=aFia
26 14 25 jaodan φi=i=aFia
27 3 26 sylan2 φiaFia
28 elequ2 a=viaiv
29 28 cbvrexvw aFiavFiv
30 27 29 sylib φivFiv
31 30 ex φivFiv
32 2 31 ralrimi φivFiv