Metamath Proof Explorer


Theorem scottelrankd

Description: Property of a Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypotheses scottelrankd.1 φ B Scott A
scottelrankd.2 φ C Scott A
Assertion scottelrankd φ rank B rank C

Proof

Step Hyp Ref Expression
1 scottelrankd.1 φ B Scott A
2 scottelrankd.2 φ C Scott A
3 fveq2 y = C rank y = rank C
4 3 sseq2d y = C rank B rank y rank B rank C
5 df-scott Scott A = x A | y A rank x rank y
6 1 5 eleqtrdi φ B x A | y A rank x rank y
7 fveq2 x = B rank x = rank B
8 7 sseq1d x = B rank x rank y rank B rank y
9 8 ralbidv x = B y A rank x rank y y A rank B rank y
10 9 elrab B x A | y A rank x rank y B A y A rank B rank y
11 6 10 sylib φ B A y A rank B rank y
12 11 simprd φ y A rank B rank y
13 2 5 eleqtrdi φ C x A | y A rank x rank y
14 elrabi C x A | y A rank x rank y C A
15 13 14 syl φ C A
16 4 12 15 rspcdva φ rank B rank C