Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Rohan Ridenour
Shorter primitive equivalent of ax-groth
Grothendieck universes are closed under collection
scottelrankd
Next ⟩
scottrankd
Metamath Proof Explorer
Ascii
Unicode
Theorem
scottelrankd
Description:
Property of a Scott's trick set.
(Contributed by
Rohan Ridenour
, 11-Aug-2023)
Ref
Expression
Hypotheses
scottelrankd.1
⊢
φ
→
B
∈
Scott
A
scottelrankd.2
⊢
φ
→
C
∈
Scott
A
Assertion
scottelrankd
⊢
φ
→
rank
⁡
B
⊆
rank
⁡
C
Proof
Step
Hyp
Ref
Expression
1
scottelrankd.1
⊢
φ
→
B
∈
Scott
A
2
scottelrankd.2
⊢
φ
→
C
∈
Scott
A
3
fveq2
⊢
y
=
C
→
rank
⁡
y
=
rank
⁡
C
4
3
sseq2d
⊢
y
=
C
→
rank
⁡
B
⊆
rank
⁡
y
↔
rank
⁡
B
⊆
rank
⁡
C
5
df-scott
⊢
Scott
A
=
x
∈
A
|
∀
y
∈
A
rank
⁡
x
⊆
rank
⁡
y
6
1
5
eleqtrdi
⊢
φ
→
B
∈
x
∈
A
|
∀
y
∈
A
rank
⁡
x
⊆
rank
⁡
y
7
fveq2
⊢
x
=
B
→
rank
⁡
x
=
rank
⁡
B
8
7
sseq1d
⊢
x
=
B
→
rank
⁡
x
⊆
rank
⁡
y
↔
rank
⁡
B
⊆
rank
⁡
y
9
8
ralbidv
⊢
x
=
B
→
∀
y
∈
A
rank
⁡
x
⊆
rank
⁡
y
↔
∀
y
∈
A
rank
⁡
B
⊆
rank
⁡
y
10
9
elrab
⊢
B
∈
x
∈
A
|
∀
y
∈
A
rank
⁡
x
⊆
rank
⁡
y
↔
B
∈
A
∧
∀
y
∈
A
rank
⁡
B
⊆
rank
⁡
y
11
6
10
sylib
⊢
φ
→
B
∈
A
∧
∀
y
∈
A
rank
⁡
B
⊆
rank
⁡
y
12
11
simprd
⊢
φ
→
∀
y
∈
A
rank
⁡
B
⊆
rank
⁡
y
13
2
5
eleqtrdi
⊢
φ
→
C
∈
x
∈
A
|
∀
y
∈
A
rank
⁡
x
⊆
rank
⁡
y
14
elrabi
⊢
C
∈
x
∈
A
|
∀
y
∈
A
rank
⁡
x
⊆
rank
⁡
y
→
C
∈
A
15
13
14
syl
⊢
φ
→
C
∈
A
16
4
12
15
rspcdva
⊢
φ
→
rank
⁡
B
⊆
rank
⁡
C