Step |
Hyp |
Ref |
Expression |
1 |
|
scottelrankd.1 |
⊢ ( 𝜑 → 𝐵 ∈ Scott 𝐴 ) |
2 |
|
scottelrankd.2 |
⊢ ( 𝜑 → 𝐶 ∈ Scott 𝐴 ) |
3 |
|
fveq2 |
⊢ ( 𝑦 = 𝐶 → ( rank ‘ 𝑦 ) = ( rank ‘ 𝐶 ) ) |
4 |
3
|
sseq2d |
⊢ ( 𝑦 = 𝐶 → ( ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝑦 ) ↔ ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐶 ) ) ) |
5 |
|
df-scott |
⊢ Scott 𝐴 = { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } |
6 |
1 5
|
eleqtrdi |
⊢ ( 𝜑 → 𝐵 ∈ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ) |
7 |
|
fveq2 |
⊢ ( 𝑥 = 𝐵 → ( rank ‘ 𝑥 ) = ( rank ‘ 𝐵 ) ) |
8 |
7
|
sseq1d |
⊢ ( 𝑥 = 𝐵 → ( ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
9 |
8
|
ralbidv |
⊢ ( 𝑥 = 𝐵 → ( ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
10 |
9
|
elrab |
⊢ ( 𝐵 ∈ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ↔ ( 𝐵 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
11 |
6 10
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝑦 ) ) ) |
12 |
11
|
simprd |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝑦 ) ) |
13 |
2 5
|
eleqtrdi |
⊢ ( 𝜑 → 𝐶 ∈ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ) |
14 |
|
elrabi |
⊢ ( 𝐶 ∈ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } → 𝐶 ∈ 𝐴 ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) |
16 |
4 12 15
|
rspcdva |
⊢ ( 𝜑 → ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐶 ) ) |