Metamath Proof Explorer


Theorem scottelrankd

Description: Property of a Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypotheses scottelrankd.1 ( 𝜑𝐵 ∈ Scott 𝐴 )
scottelrankd.2 ( 𝜑𝐶 ∈ Scott 𝐴 )
Assertion scottelrankd ( 𝜑 → ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 scottelrankd.1 ( 𝜑𝐵 ∈ Scott 𝐴 )
2 scottelrankd.2 ( 𝜑𝐶 ∈ Scott 𝐴 )
3 fveq2 ( 𝑦 = 𝐶 → ( rank ‘ 𝑦 ) = ( rank ‘ 𝐶 ) )
4 3 sseq2d ( 𝑦 = 𝐶 → ( ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝑦 ) ↔ ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐶 ) ) )
5 df-scott Scott 𝐴 = { 𝑥𝐴 ∣ ∀ 𝑦𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) }
6 1 5 eleqtrdi ( 𝜑𝐵 ∈ { 𝑥𝐴 ∣ ∀ 𝑦𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } )
7 fveq2 ( 𝑥 = 𝐵 → ( rank ‘ 𝑥 ) = ( rank ‘ 𝐵 ) )
8 7 sseq1d ( 𝑥 = 𝐵 → ( ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝑦 ) ) )
9 8 ralbidv ( 𝑥 = 𝐵 → ( ∀ 𝑦𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) ↔ ∀ 𝑦𝐴 ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝑦 ) ) )
10 9 elrab ( 𝐵 ∈ { 𝑥𝐴 ∣ ∀ 𝑦𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } ↔ ( 𝐵𝐴 ∧ ∀ 𝑦𝐴 ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝑦 ) ) )
11 6 10 sylib ( 𝜑 → ( 𝐵𝐴 ∧ ∀ 𝑦𝐴 ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝑦 ) ) )
12 11 simprd ( 𝜑 → ∀ 𝑦𝐴 ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝑦 ) )
13 2 5 eleqtrdi ( 𝜑𝐶 ∈ { 𝑥𝐴 ∣ ∀ 𝑦𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } )
14 elrabi ( 𝐶 ∈ { 𝑥𝐴 ∣ ∀ 𝑦𝐴 ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝑦 ) } → 𝐶𝐴 )
15 13 14 syl ( 𝜑𝐶𝐴 )
16 4 12 15 rspcdva ( 𝜑 → ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝐶 ) )