Metamath Proof Explorer


Theorem scottrankd

Description: Rank of a nonempty Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypothesis scottrankd.1 ( 𝜑𝐵 ∈ Scott 𝐴 )
Assertion scottrankd ( 𝜑 → ( rank ‘ Scott 𝐴 ) = suc ( rank ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 scottrankd.1 ( 𝜑𝐵 ∈ Scott 𝐴 )
2 scottex2 Scott 𝐴 ∈ V
3 2 rankval4 ( rank ‘ Scott 𝐴 ) = 𝑥 ∈ Scott 𝐴 suc ( rank ‘ 𝑥 )
4 3 a1i ( 𝜑 → ( rank ‘ Scott 𝐴 ) = 𝑥 ∈ Scott 𝐴 suc ( rank ‘ 𝑥 ) )
5 1 adantr ( ( 𝜑𝑥 ∈ Scott 𝐴 ) → 𝐵 ∈ Scott 𝐴 )
6 simpr ( ( 𝜑𝑥 ∈ Scott 𝐴 ) → 𝑥 ∈ Scott 𝐴 )
7 5 6 scottelrankd ( ( 𝜑𝑥 ∈ Scott 𝐴 ) → ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝑥 ) )
8 6 5 scottelrankd ( ( 𝜑𝑥 ∈ Scott 𝐴 ) → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐵 ) )
9 7 8 eqssd ( ( 𝜑𝑥 ∈ Scott 𝐴 ) → ( rank ‘ 𝐵 ) = ( rank ‘ 𝑥 ) )
10 9 suceqd ( ( 𝜑𝑥 ∈ Scott 𝐴 ) → suc ( rank ‘ 𝐵 ) = suc ( rank ‘ 𝑥 ) )
11 10 iuneq2dv ( 𝜑 𝑥 ∈ Scott 𝐴 suc ( rank ‘ 𝐵 ) = 𝑥 ∈ Scott 𝐴 suc ( rank ‘ 𝑥 ) )
12 1 ne0d ( 𝜑 → Scott 𝐴 ≠ ∅ )
13 iunconst ( Scott 𝐴 ≠ ∅ → 𝑥 ∈ Scott 𝐴 suc ( rank ‘ 𝐵 ) = suc ( rank ‘ 𝐵 ) )
14 12 13 syl ( 𝜑 𝑥 ∈ Scott 𝐴 suc ( rank ‘ 𝐵 ) = suc ( rank ‘ 𝐵 ) )
15 4 11 14 3eqtr2d ( 𝜑 → ( rank ‘ Scott 𝐴 ) = suc ( rank ‘ 𝐵 ) )