Step |
Hyp |
Ref |
Expression |
1 |
|
scottrankd.1 |
⊢ ( 𝜑 → 𝐵 ∈ Scott 𝐴 ) |
2 |
|
scottex2 |
⊢ Scott 𝐴 ∈ V |
3 |
2
|
rankval4 |
⊢ ( rank ‘ Scott 𝐴 ) = ∪ 𝑥 ∈ Scott 𝐴 suc ( rank ‘ 𝑥 ) |
4 |
3
|
a1i |
⊢ ( 𝜑 → ( rank ‘ Scott 𝐴 ) = ∪ 𝑥 ∈ Scott 𝐴 suc ( rank ‘ 𝑥 ) ) |
5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ Scott 𝐴 ) → 𝐵 ∈ Scott 𝐴 ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ Scott 𝐴 ) → 𝑥 ∈ Scott 𝐴 ) |
7 |
5 6
|
scottelrankd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ Scott 𝐴 ) → ( rank ‘ 𝐵 ) ⊆ ( rank ‘ 𝑥 ) ) |
8 |
6 5
|
scottelrankd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ Scott 𝐴 ) → ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐵 ) ) |
9 |
7 8
|
eqssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ Scott 𝐴 ) → ( rank ‘ 𝐵 ) = ( rank ‘ 𝑥 ) ) |
10 |
9
|
suceqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ Scott 𝐴 ) → suc ( rank ‘ 𝐵 ) = suc ( rank ‘ 𝑥 ) ) |
11 |
10
|
iuneq2dv |
⊢ ( 𝜑 → ∪ 𝑥 ∈ Scott 𝐴 suc ( rank ‘ 𝐵 ) = ∪ 𝑥 ∈ Scott 𝐴 suc ( rank ‘ 𝑥 ) ) |
12 |
1
|
ne0d |
⊢ ( 𝜑 → Scott 𝐴 ≠ ∅ ) |
13 |
|
iunconst |
⊢ ( Scott 𝐴 ≠ ∅ → ∪ 𝑥 ∈ Scott 𝐴 suc ( rank ‘ 𝐵 ) = suc ( rank ‘ 𝐵 ) ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → ∪ 𝑥 ∈ Scott 𝐴 suc ( rank ‘ 𝐵 ) = suc ( rank ‘ 𝐵 ) ) |
15 |
4 11 14
|
3eqtr2d |
⊢ ( 𝜑 → ( rank ‘ Scott 𝐴 ) = suc ( rank ‘ 𝐵 ) ) |